BOWEN logo

Please use this identifier to cite or link to this item: ir.bowen.edu.ng:8181/jspui/handle/123456789/1033
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFalohun, A. S.-
dc.contributor.authorAworinde, H. O.-
dc.contributor.authorAfolabi, A. O.-
dc.contributor.authorIsmaila, W. O.-
dc.contributor.authorFenwa, O. D.-
dc.date.accessioned2023-04-13T13:48:49Z-
dc.date.available2023-04-13T13:48:49Z-
dc.date.issued2018-
dc.identifier.citationFalohun A.S ., Aworinde, H. O., Afolabi, A. O. Ismaila, W. O. & Fenwa, O.D. (2018). Fingerprint phenotyping for ethnicity classification: A generative deep learning perspective. An International Journal of Biological and Physical Sciences, 23(1), 84 - 90.en_US
dc.identifier.uriir.bowen.edu.ng:8080/jspui/handle/123456789/1033-
dc.description.abstractIn recent years, deep learning techniques have already been impacting wide range of information processing, pattern recognition, image processing and computer vision related works within the traditional and widened scopes. Hence, this research explored a generative deep architecture approach to better engage soft and hard biometric features for identification and classification of individual persons into their respective ethnic divides.en_US
dc.language.isoenen_US
dc.publisherAn International Journal of Biological and Physical Sciencesen_US
dc.subjectDeep learningen_US
dc.subjectFingerprint classificationen_US
dc.subjectEthnicity identificationen_US
dc.subjectRecognition accuracyen_US
dc.titleFingerprint phenotyping for ethnicity classification: A generative deep learning perspectiveen_US
dc.typeArticleen_US
Appears in Collections:Article

Files in This Item:
File Description SizeFormat 
29.pdfFingerprint Phenotyping for Ethnicity Classification: A Generative Deep Learning Perspective4.34 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.