BOWEN UNIVERSITY, IWO, OSUN STATE

COLLEGE OF AGRICULTURE, ENGINEERING AND SCIENCE

INDUSTRIAL CHEMISTRY PROGRAMME

2022/2023 SESSION B.SC DEGREE FIRST SEMESTER EXAMINATION

Course Code: CHM 323 Courses Title: Physical Chemistry II Credit: 2

INSTRUCTIONS: I. QUESTION ONE IN SECTION A IS COMPULSORY

II. ANSWER ONE QUESTION EACH FROM SECTIONS B AND C

III. ANSWER EACH QUESTION ON A FRESH PAGE

USEFUL PHYSICAL CONSTANTS

 $R = 8.314 \text{ Jmol}^{-1}\text{K}^{-1} = 0.0821 \text{ Latm mol}^{-1} \text{ K}^{-1}$

SECTION A

QUESTION ONE (30 MARKS)

a. Briefly explain Raoult's law?

3 marks

b. Sketch the diagram showing negative deviation from Raoult's law

7 marks

c. What mass of ethylene glycol (C₂H₆O₂) in grams, must be added to 1.0 kg of water to produce a solution that boils at 105.0 °C? for water

is $0.152 \, {}^{\circ}\text{C/m}$.

[C = 12.01 g, H = 1.00; O = 16.00]

4 marks

d. Which antifreeze is used to prevent the freezing of engine blocks in cold climates?

1 mark

Using (a) Maxwell-Boltzman distribution (b) Fermi-Dirac distribution and (c) Bose-Einstein distribution, how can two submersible pumping machines be place in three (3) bore holes.

15 marks

SECTION B

QUESTION TWO (20 MARKS)

a. What are colligative properties?

4 marks

b. Briefly explain ideal solutions?

4 marks

c. List four conditions that must be satisfied by an ideal solution?

4 marks

d. In a Cotrell determination. 22 g of benzene was used as solvent. The reading on the differential thermometer before and after adding 0.586 g of naphthalene (C₁₀H₁₈) were 1.262 and 1.799 respectively. In a separate experiment, using the same amount of benzene but this time adding 0.627 g of an organic compound X, the temperature readings were 1.269 and 1.963. Calculate

i. the ebullioscopic constant from the results of the first experiment [C = 12.0, H = 1.00, O = 16.00].

4 marks

ii. Calculate the molar mass of X.

4 marks

QUESTION THREE (20 MARKS)

a. What is osmotic pressure?

3 marks

b. List three uses of osmotic pressure.

3 marks

c. A solution is prepared by dissolving 50 g of haemoglobin in enough H₂O to

make 1.00~L of solution. Measurement of the osmotic pressure was carried out and found to be 14.3~mmHg at $28^{\circ}C$. Calculate the molar mass of haemoglobin. (Assume there is no change in volume when the hemoglobin is added

to the water). 5 marks

d. What is van't Hoff factor?

4 marks

The freezing point of an aqueous 0.060 m solution is -0.31 °C. What is the van't Hoff factor for CaCl₂ at this concentration?

4 marks

e. State one difference between hypotonic and hypertonic solutions.

1 mark

SECTION C

QUESTION FOUR (20 MARKS)

- a. A 10.40g sample of silver was heated to 100.0°C. It was then added to 28.0 g of water in an insulated cup. The water temperature rose 25.0 to 26.48°C. What is the specific heat capacity of silver? [Specific heat capacity of water =4.2Jg⁻¹K⁻¹].
- b. Briefly discuss standard enthalpy changes 6 marks
- c. If the molecular heat of transition that accompanied the transition below at 60°C is 95.8 kJmol⁻¹. CO_(g) CO_(s)

Calculate the standard entropy change (ΔS°) accompanying the transition. **6 marks**

QUESTION FIVE (20 MARKS)

- a. What is the entropy change when 6.02 x 10²¹ atoms of CO₂ is allowed to expand isothermally from a volume of 25 cm³ to 750 cm³ at 27°C. **9 marks**
- **b.** Briefly explain the appropriate law involved in the interconvertibility of matter and energy.

5 marks

c. Briefly explain the followings: (a) Open system (b) Closed system and (c) Isolated System.

6 marks