BOWEN UNIVERSITY, IWO, OSUN STATE COLLEGE OF AGRICULTURE, ENGINEERING AND SCIENCE INDUSTRIAL CHEMISTRY PROGRAMME

2022/2023 SESSION B.SC. DEGREE FIRST SEMESTER EXAMINATION

Course Code: CHM 219 Course Title: Structure and bonding of molecule

Date: Monday, 13/02/2023 Course Credit: 2 Time Allowed: 2 hrs

INSTRUCTIONS: (a) Answer each main question on a fresh page in your booklet

(b) Answer ALL questions in SECTION A and ONE question each

from SECTIONS B & C

SECTION A (30 marks)

1. Electrons in a molecule occupy _____ orbital. 2. theory assumes that electrons occupy atomic orbitals of individual atoms within a molecule, and that the electrons of one atom are attracted to the nucleus of another atom. 3. The three p orbitals are oriented ______ to each other. 4. The degeneracy of p orbital remains in presence of external field. 5. The electron density in the area between two bonding atoms as a result of overlapping, thereby increases the stability of the resulting molecule. 6. The electrons in the valence shell of a central atom form either _____ pairs or lone pairs of electrons. 7. VSEPR theory predicts the of electron pairs around each central atom and, usually, the correct arrangement of atoms in a molecule. 8. The order of determines the amount of space occupied by different regions of electrons. 9. In trigonal bipyramidal electron-pair geometry, lone pairs always occupy positions. 10. In the figure above, the electron pair geometries of the carbonyl carbon is 11. Electrons in a molecule occupy molecular orbitals rather than atomic orbitals. True/False? 12. The pattern in which the atomic orbitals overlap in sigma and pi bonds differ. True/False? 13. In VBT, when two atoms get closer than the optimal distance, the between the

14. A sigma bond can also be formed through the overlap of two p orbitals. True/False?

two nuclei becomes predominant.

15.	. The energy level of s orbital decreases as we move away from the nucleus.	True/False?
16.	. Group I elements are also known as metals.	
	. Group I metals possess a crystal structure.	
	. Group I elements react with non-metals to form compounds	s.
19.	. The chlorides of group I elements dissolved in water to form a	solution.
20.	. The nitrates of groups I and II elements decomposed to give metal oxide, oxygen.	and
21.	. Group II metal oxides become moreas you go down the grou	ıp.
22.	The boron family has oxidation states of +3 and +1 in which the +3 oxid favourable except for thallium which prefers +1 oxidation state due to its	
	tendency is known as	
	The state of compounds of tin and lead are regarded as ionic.	
24.	. Crystal structure of β-tin is	
	. The oxides of germanium, tin and lead are in nature.	
26.	is used as a photon detector in various infrared detectors.	
27.	. AlCl ₃ and BCl ₃ are widely used as catalyst because they act as	acids.
28.	. The expected simplest boron hydride, BH ₃ , exists in its dimer as	
29.	. The structure of the elements in group IV change from	in carbon and
	silicon to giant metallic lattices in tin and lead.	
30.	. The structure below represents a	
	$\dot{S} = C = \dot{S}$	

SECTION B

Question 1

- (a) Define degenerate orbitals and give examples. 3 marks
- (b) Calculate the degeneracy of the level of the hydrogen atom having energy RH / 16.

5 marks

(c) Identify the quantum numbers in 4d⁵electron.

5 marks

(d) What are the assigned designations for the seven f-orbitals?

7marks

Question 2

- (a) Differentiate between electron pair geometries and molecular structures.
- (b) Copy and complete the following table.

4 marks 16 marks

Ions	Lewis	Molecular	Bond angle	Molecular
	structure	Structure		name
CO ₃ ² -				
ICl ₂ ⁺				
H_3O^+ ,				
ICl ₄ .				

1014	
SECTION C	
Question 3	
(a) Comment briefly on the general periodic trend of gree (i) first ionization energy (ii) atomic radius	oups I and II in relation to
	3 marks
(b) Discuss briefly, with equations where necessary, the of the carbonates and hydrogenearbonates of group I an	•
, ,	7 marks
(c) Boron and aluminium belong to group III eleme	ents, and when they react with chlorine
separately, they form the chloride of the elements.	
(i) Write the reactions for the formation of each compound	unds 3 marks
(ii) Describe the structure and bonding of each compound	nds 7 marks
Question 4	
(a) Briefly discuss the structure and bonding of the following	owing compounds of group 14 elements:
(i) CO	2 ^{1/2} marks
(ii) CO ₂	2 ^{1/2} marks

(1) CO	2 mark				
(ii) CO ₂	21/2 marks				
(iii) SiO ₂	2 ^{1/2} marks				
(iv) SiH ₄	2 ^{1/2} mark				
(b) Enumerate the main groups /representative elements of the periodic table.	4 marks				
(c) Give one example of the element and write their respective corresponding electronic					
configuration in each of the following classifications:					

1^{1/2} marks (i) Pnictogens (ii) alkaline-earth metals 1^{1/2} marks 1^{1/2} marks (iii) chalcogens (iv) halogens 1^{1/2} marks