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Abstract

This paper examined the solution of Volterra integral equations of the second kind
with separable kernels using Taylor series expansion method. A simple formula
for expressing the derivatives of the unknown function in terms of lower order
derivatives is derived. The proposed method is applied to solve both cases of linear
and non linear Volterra integral equations of the second kind with separable kernels
obtained from the literature. The results of the numerical examples considered
showed the efficiency and reliability of the method.
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1. INTRODUCTION

The importance of Volterra integral equations cannot be overemphasized in scientific
and engineering applications. Volterra integral equations are encountered in
mathematical modeling of population dynamics, epidemiology and semi-conductor
devices [18]. The equations also arise as a result of reformulation of initial value
problems.
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In recent times, attention has been given to the development of analytical and
approximate approaches for the solution of both linear and nonlinear forms of these
integral equations. Adomian [1] proposed Adomian decomposition method for
solving linear and non linear integral equations. Costerell and spigler [4] applied
signoidal function to develop a method for tackling Volterra integral equations of
the second kind. Wazwaz [18, 19] proposed Variational Iteration method, Adomian
decomposition method, Laplace transform method and successive approximation
method for solving Fredholm and Volterra integral equations of the first and second
kinds. Wazwaz [20, 21] developed a modified Adomian decomposition method for
differential equation and linear and non linear integral equations. Brunner [3] suggested
implicitly linear collocation method to solve non linear Volterra integral equations and
integro-differential equations with Hemmerstein kernel. Tang et al. [17] studied product
integration method to solve integral equations with logarithmic singular kernel while
Diogo et al.[16] considered Hermite type collocation method for the solution of second
kind Volterra integral equations with a certain weakly singular kernel. Ogunlaran and
Akinlotan [12] developed a spline collocation method for solving system of linear
Fredholm integral equations. Ogunlaran and Oke [13] examined a spline collocation
method for the solution of first order integro-differential equations. Odibat [11] applied
Differential transform method for the solution of Volterra integral equations of the
second kind with separable kernel. Lichea et al. [7] proposed Runge-Kutta methods
for solving the second kind Volterra integral equations with singular kernel. Rocha et
al. [15] formulated a collocation method with piecewise continuous basis functions to
solve integral equations of the second kind.

Ren et al. [14] and Maleknejad et al. [9] proposed Taylor series method for solving
Fredholm integral equations of the second kind with weakly smooth or weakly singular
kernel while Huabsomboon [5] in an attempt to improve on the results obtained in [14]
presented a modified form of Taylor series method to solve the same problem with
better results obtained. Majeknejad and Aghazadeh [9] applied Taylor series method
for the solution of the Volterra integral equations of the second kind with weakly
smooth or weakly singular kernel. However, in order to improve on the results in [8],
Huabsomboon et al. [6] also studied Taylor series method. Similarly, Majeknejad and
Damencheli [10] and Barikbin [2] proposed Taylor series method for Volterra integral
equations with convolution kernels. Despite the successful applications of Taylor series
method for solving a wide range of equations by several authors, one major drawback of
the method generally is the difficulty posed in obtaining the derivatives of the unknown
function, especially if the function is complicated.
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The second kind Volterra integral equation is an equation of the form

y(x) = f(x) +

∫ x

0

k(x, t)y(t)dt, (1)

where f(x) is a known function, k(x, t) is a known integral kernel and y(x) is the
unknown function to be determined.
The focus of this work is to employ Taylor series method for the solution the second
kind Volterra integral equations with separable kernels, that is

k(x, t) =
m∑
i=1

gi(x)hi(t), (2)

such that the second order Volterra integral equation (1) can be written as

y(x) = f(x) +
m∑
i=1

gi(x)

∫ x

0

hi(t)y(t)dt. (3)

An approach has also been derived in this study to circumvent the drawback associated
with differentiation mentioned above during the process of solving Volterra integral
equations with separable kernels using Taylor series method.

2. METHOD OF SOLUTION

Theorem 2.1. Let y(x) be defined as in (3) and suppose y(x) is a smooth real-valued function
of a real variable, then the jth order derivative of y(x) is given by

y(j)(x) = f (j)(x) +

j−1∑
k=0

[(
j

1

)(
0

k

) m∑
i=1

g
(j−1)
i (x)h

(0)
i (x) +

(
j

2

)(
1

k

) m∑
i=1

g
(j−2)
i (x)h

(1−k)
i (x)

+

(
j

3

)(
2

k

) m∑
i=1

g
(j−3)
i (x)h

(2−k)
i (x) + · · ·+

(
j

j − 1

)(
j − 2

k

) m∑
i=1

g′i(x)h
(j−k−2)
i (x)

+

(
j

j

)(
j − 1

k

) m∑
i=1

g
(0)
i (x)h

(j−k−1)
i (x)

]
y(k)(x) +

m∑
i=1

g
(j)
i (x)

∫ x

0
hi(t)y(t)dt. (4)

Proof. The proof of Theorem 2.1 shall be established by mathematical induction.
For j = 1, that is p1, we obtain from the theorem 2.1.

y′(x) = f ′(x) +

(
1

1

)(
0

0

) m∑
i=1

gi(x)hi(x)y(x) +
m∑
i=1

g′i(x)

∫ x

0

hi(t)y(t)dt. (5)

or

y′(x) = f ′(x) +
m∑
i=1

gi(x)hi(x)y(x) +
m∑
i=1

g′i(x)

∫ x

0

hi(t)y(t)dt, (6)
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which is true.
Suppose that pr holds, that is

y(r)(x) = f (r)(x) +

r−1∑
k=0

[(
r

1

)(
0

k

) m∑
i=1

g
(r−1)
i (x)h

(0)
i (x) +

(
r

2

)(
1

k

) m∑
i=1

g
(r−2)
i (x)h

(1−k)
i (x)

+

(
r

3

)(
2

k

) m∑
i=1

g
(r−3)
i (x)h

(2−k)
i (x) + · · ·+

(
r

r − 1

)(
r − 2

k

) m∑
i=1

g′i(x)h
(r−k−2)
i (x)

+

(
r

r

)(
r − 1

k

) m∑
i=1

g
(0)
i (x)h

(r−k−1)
i (x)

]
y(k)(x) +

m∑
i=1

g
(r)
i (x)

∫ x

0
hi(t)y(t)dt. (7)

We will now establish the validity of pr+1 based on the induction step (7). Now,

y(r+1) =
d

dx

(
y(r)

)
. (8)

Substituting equation (7) into (8) yields

y(r+1)(x) =
d

dx

(
f (r)(x) +

r−1∑
k=0

[(
r

1

)(
0

k

) m∑
i=1

g
(r−1)
i (x)h

(0)
i (x) +

(
r

2

)(
1

k

) m∑
i=1

g
(r−2)
i (x)h

(1−k)
i (x)

+

(
r

3

)(
2

k

) m∑
i=1

g
(r−3)
i (x)h

(2−k)
i (x) + · · ·+

(
r

r − 1

)(
r − 2

k

) m∑
i=1

g′i(x)h
(r−k−2)
i (x)

+

(
r

r

)(
r − 1

k

) m∑
i=1

g
(0)
i (x)h

(r−k−1)
i (x)

]
y(k)(x) +

m∑
i=1

g
(r)
i (x)

∫ x

0
hi(t)y(t)dt

)
.

(9)

y(r+1)(x) = f (r+1)(x) +

r−1∑
k=0

[(
r

1

)(
0

k

) m∑
i=1

(
g
(r)
i (x)h

(0)
i (x) + g

(r−1)
i (x)h′i(x)

)

+

(
r

2

)(
1

k

) m∑
i=1

(
g
(r−1)
i (x)h

(1−k)
i (x) + g
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i (x)h

(2−k)
i (x)

)

+

(
r

3

)(
2

k
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i=1

(
g
(r−2)
i (x)h

(2−k)
i (x) + g

(r−3)
i (x)h

(3−k)
i (x)

)
+ · · ·

+

(
r

r − 1

)(
r − 2

k

) m∑
i=1

(
g′′i (x)h

(r−k−2)
i (x) + g′i(x)h

(r−k−1)
i (x)

)

+

(
r

r

)(
r − 1

k

) m∑
i=1

(
g′i(x)h

(r−k−1)
i (x) + g

(0)
i (x)h

(r−k)
i (x)

)]
y(k)(x)

+
r−1∑
k=0

[(
r

1

)(
0

k

) m∑
i=1

g
(r−1)
i (x)h

(0)
i (x) +

(
r

2

)(
1

k

) m∑
i=1

g
(r−2)
i (x)h

(1−k)
i (x)

(10)



Effective Solution Method for the Second Kind Volterra Integra... 259

+

(
r

3

)(
2

k

) m∑
i=1

g
(r−3)
i (x)h

(2−k)
i (x) + · · ·+

(
r

r − 1

)(
r − 2

k

) m∑
i=1

g′i(x)h
(r−k−2)
i (x)

+

(
r

r

)(
r − 1

k

) m∑
i=1

g
(0)
i (x)h

(r−k−1)
i (x)

]
y(k+1)(x) +

m∑
i=1

g
(r)
i (x)hi(x)y(x)

+
m∑
i=1

g
(r+1)
i (x)

∫ x

0
hi(t)y(t)dt. (11)

y(r+1)(x) = f (r+1)(x) +

r−1∑
k=0

[(
r

1

)(
0

k

) m∑
i=1

(
g
(r)
i (x)h

(0)
i (x) + g

(r−1)
i (x)h′i(x)

)

+

(
r

2

)(
1

k

) m∑
i=1

(
g
(r−1)
i (x)h

(1−k)
i (x) + g

(r−2)
i (x)h

(2−k)
i (x)

)

+

(
r

3

)(
2

k

) m∑
i=1

(
g
(r−2)
i (x)h

(2−k)
i (x) + g

(r−3)
i (x)h

(3−k)
i (x)

)
+ · · ·

+

(
r

r − 1

)(
r − 2

k

) m∑
i=1

(
g′′i (x)h

(r−k−2)
i (x) + g′i(x)h

(r−k−1)
i (x)

)

+

(
r

r

)(
r − 1

k

) m∑
i=1

(
g′i(x)h

(r−k−1)
i (x) + g

(0)
i (x)h

(r−k)
i (x)

)]
y(k)(x)

+
r−1∑
k=0

[(
r

1

)(
0

k

) m∑
i=1

g
(r−1)
i (x)h

(0)
i (x) +
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r

2
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1

k

) m∑
i=1

g
(r−2)
i (x)h

(1−k)
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+

(
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k

) m∑
i=1
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(2−k)
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r − 2

k

) m∑
i=1

g′i(x)h
(r−k−2)
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y(k+1)(x) +
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i=1
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i (x)hi(x)y(x)

+
m∑
i=1

g
(r+1)
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∫ x

0
hi(t)y(t)dt. (12)

Simplifying, we obtain

y(r+1)(x) = f (r+1)(x) +
r∑

k=0

[(
r + 1

1

)(
0

k

) m∑
i=1

g
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(0)
i (x) +
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1
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+
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(2−k)
i (x) + · · ·+
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r + 1

r

)(
r − 2
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(r−k−1)
i (x)

+

(
r + 1

r + 1

)(
r

k

) m∑
i=1

g
(0)
i (x)h

(r−k)
i (x)

]
y(k)(x) +

m∑
i=1

g
(r+1)
i (x)

∫ x

0
hi(t)y(t)dt,

(13)

which is true. Thus, the theorem is true.
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Table 1: Coefficients of y(k)(x) in y(j)(x)

y y′ y′′ · · · y(j−2) y(j−1)(
j
1

) (
0
0

)
g(j−1)h(

j
2

) (
1
0

)
g(j−2)h′ (

1
1

)
g(j−2)h(

j
3

) (
2
0

)
g(j−3)h′′ (

2
1

)
g(j−3)h′ (

2
2

)
g(j−3)h(

j
4

) (
3
0

)
g(j−4)h′′′ (

3
1

)
g(j−4)h′′ (

3
2

)
g(j−4)h′

...
...

... · · ·(
j

j−1

) (
j−2
0

)
g′h(j−2)

(
j−2
1

)
g′h(j−3)

(
j−2
2

)
g′h(j−4)

(
j−2
j−2

)
g′h(

j
j

) (
j−1
0

)
gh(j−1)

(
j−1
1

)
gh(j−2)

(
j−1
2

)
gh(j−3)

(
j−1
j−2

)
gh′ (

j−1
j−1

)
gh

For the case m = 1, k(x, t) = g1(x)h1(t). However, let g1(x) ≡ g(x) and h1(x) ≡ h(t)

such that k(x, t) = g(x)h(t), then (4) reduces to:

y(j)(x) = f (j)(x) +

j−1∑
k=0

[(
j

1

)(
0

k

)
g(j−1)h(0) +

(
j

2

)(
1

k

)
g(j−2)h(1−k)

+

(
j

3

)(
2

k

)
g(j−3)h(2−k) + · · ·+

(
j

j − 1

)(
j − 2

k

)
g′h(j−k−2)

+

(
j

j

)(
j − 1

k

)
gh(j−k−1)

]
y(k)(x) + g(j)(x)

∫ x

0

h(t)y(t)dt. (14)

The derivatives of y (i.e. y(j)), as given by equation (14) (and likewise by equation
(4)), are made up of three components which are namely: f (j)(x), g(j)(x)

∫ x

0
h(t)y(t)dt

and the expressions involving y(k)(x), k = 0, 1, · · · , j − 1. It was observed that the
coefficient of each of f (j)(x) and g(j)(x)

∫ x

0
h(t)y(t)dt is 1. However, the coefficients

of y(k)(x) in equation (14) can be written in tabular form as in Table 1.

Note that the first entry in each row multiplies every entry in the row and then
the summation of the entries in each column gives the corresponding expression
involving y(k)(x). We observed from equation (14) after leaving out f (j)(x) and
g(j)(x)

∫ x

0
h(t)y(t)dt or directly from table 1 as follows:

(i) y(j)(x) is expressed in terms of j lower derivatives of y. That is, y(k), k =

0, 1, · · · , (j − 1);

(ii) addition of the orders of the derivatives of g, h and y for each term of y(j)(x)
equals (j − 1);

(iii) there are (j − k) terms involving each of the lower derivatives y(k)(x), k =
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Table 2: Coefficients of y(k)(x) in y′′′(x)

y y′ y′′

3 1

3 1 1

1 1 2 1

Table 3: Coefficients of y(k)(x) in y(5)(x)

y y′ y′′ y′′′ y(4)

5 1

10 1 1

10 1 2 1

5 1 3 3 1

1 1 4 6 4 1

0, 1, · · · , j − 1 of y(j)(x). For instance, in y(5)(x) there are 5 terms involving
y, 4 terms involving y′, · · · and 1 term involving y(′v)(x).

(iv) the order of derivative of g is (j−k−1) in the first term of y(k)(x) and it decreases
by one in each successive term till it becomes 0. On the other hand, the order of
derivative of h increases from zero by 1 till it becomes (j − k − 1). For instance,
for y(5)(x), the products of derivatives of the functions involved for y are g′vh,
g′′′h′, g′′h′′, · · · , gh′v.

Now excluding the functions g, h and their derivatives from Table 1, we obtain for
particular cases n = 3, 5, 7 as given in Tables 2− 4.

0 We further observed that:

Table 4: Coefficients of y(k)(x) in y(7)(x)

y y′ y′′ y′′′ y(4) y(5) y(6)

7 1

21 1 1

35 1 2 1

35 1 3 3 1

21 1 4 6 4 1

7 1 5 10 10 5 1

1 1 6 15 20 15 6 1
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(v) leaving out the first row and column in Tables 2− 4, the remaining entries form a
Pascal triangle.

(vi) the entries on the first column of each of the tables correspond to the entries that
would be in the next row if the Pascal triangle were to be extended by one row
but with the first element ignored.

(vii) the coefficients of y(k) in equation (14) can be expressed exactly as in Tables 1−4.
Note that Tables 2-4 exclude the products of derivatives of gi(x) and hi(t).

The Volterra integral equation of the second kind is estimated by using the nth order
Taylor polynomial of degree n about the point x0 given as follows:

y(x) =
n∑

k=0

y(j)(x0)

j!
(x− x0)

j, (15)

where y(j)(x) is as defined in (4).

The error bound associated with the approximate solution (15) for the solution of the
Volterra integral equation of the second kind (1) is given by:

|Rn+1(x)| ≤
M

(n+ 1)!
y(n+1)(ξ) ξ ∈ [x0, x], (16)

where M = max|(x− x0)
n+1|.

3. TEST PROBLEMS

In this section, the proposed method is applied to solve some test problems about
x0 = 0 in order to demonstrate the efficiency of the method for handling the second
kind Volterra integral equation with separable kernels.

Problem 3.1
Solve the Volterra integral equation

y(x) = x+

∫ x

0

(t− x)y(t)dt, 0 < x < 1. (17)

The exact solution is y(x) = sinx.

Source: Odibat [11].
Here, f(x) = x and let k(x, t) = g1(x)h1(t) + g2(x)h2(t), where g1(x) = 1, h1(t) = t,
g2(x) = x, h2(t) = −1.
Applying Theorem 2.1, we obtain:
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y(0) = 0, y′(0) = 1, y′′(0) = 0, y′′′(0) = −1, u′v(0) = 0,
y(5)(0) = 1, y(6)(0) = 0, y(7)(0) = −1, y(8)(0) = 0, y(9)(0) = 1.
Therefore following from (15), the solution of (17) is obtained as

y(x) = x− 1

3!
x3 +

1

5!
x5 − 1

7!
x7 +

1

9!
x9 + · · ·

which is the closed form solution of the exact solution for the equation (17).

Problem 3.2
Solve

y(x) = 1− x− x2

2
+

∫ x

0

(x− t)y(t)dt, 0 < x < 1. (18)

The exact solution is y(x) = 1− sinhx.

Source: Odibat [11].
In this case, f(x) = 1 − x − x2

2
and k(x, t) = g1(x)h1(t) + g2(x)h2(t). Choose

g1(x) = x, h1(t) = 1, g2(x) = −1, h2(t) = t.
Applying Theorem 2.1, we obtain:
y(0) = 1, y′(0) = −1, y′′(0) = 0, y′′′(0) = −1, y′v(0) = 0,
y(5)(0) = −1, y(6)(0) = 0, y(7)(0) = −1, y(8)(0) = 0, y(9)(0) = −1.
Consequently, the solution of (18) is obtained as

y(x) = 1− x− 1

3!
x3 − 1

5!
x5 − 1

7!
x7 − 1

9!
x9 − · · ·

which is the closed form solution of the exact solution for the equation (18).

Problem 3.3
Consider the nonlinear Volterra integral equation

y(x) +

∫ x

0

(
y2(t) + y(t)

)
dt =

3

2
− 1

2
e(−2x), 0 < x < 1. (19)

The exact solution is y(x) = exp(−x).

Source: Odibat [11].

In this case, f(x) = 3
2
− 1

2
e(−2x) and let k(x, t) = g(x)h(t). Choose g(x) = −1,

h(t) = y(t) + 1.
Applying Theorem 2.1, we obtain:
y(0) = 1, y′(0) = −1, y′′(0) = 1, y′′′(0) = −1, y′v(0) = 1,
y(5)(0) = −1, y(6)(0) = 1, y(7)(0) = −1, y(8)(0) = 1, y(9)(0) = −1.
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Consequently, the solution of (19) is

y(x) = 1−x+
1

2!
x2− 1

3!
x3+

1

4!
x4− 1

5!
x5+

1

6!
x6− 1

7!
x7+ · · ·

which is the closed form solution of the exact solution for the equation (19).

Problem 3.4
Solve the Volterra integral equation

y(x) = 1−
∫ x

0

(x− t)y(t)dt, 0 < x < 1. (20)

The exact solution is y(x) = cos x.

Source: Odibat [11].
In this case, f(x) = 1 and k(x, t) = g1(x)h1(t) + g2(x)h2(t), where g1(x) = x,
h1(t) = −1, g2(x) = 1, h2(t) = t. Applying Theorem 2.1, we obtain:
y(0) = 1, y′(0) = 0, y′′(0) = −1, y′′′(0) = 0, y′v(0) = 1,
y(5)(0) = 0, y(6)(0) = −1, y(7)(0) = 0, y(8)(0) = 1, y(9)(0) = 0.
Therefore, the solution of (20) is

y(x) = 1− 1

2!
x2 +

1

4!
x4 − 1

6!
x6 +

1

8!
x8 + · · ·

which is the closed form solution of the exact solution for the equation (20).

Problem 3.5
Consider the nonlinear Volterra integral equation

y(x) = cos(x) +
1

2
sin(2x) + 3x− 2

∫ x

0

(
1 + y2(t)

)
dt, 0 < x < 1. (21)

The exact solution is y(x) = cos x.

Source: Odibat [11].
Here, f(x) = cos(x) + 1

2
sin(2x) + 3x and k(x, t) = g(x)h(t), where g(x) = −2,

h(t) = 1
y(t)

+ y(t).
Applying Theorem 2.1, we obtain:
y(0) = 1, y′(0) = 0, y′′(0) = −1, y′′′(0) = 0, y′v(0) = 1,
y(5)(0) = 0, y(6)(0) = −1, y(7)(0) = 0, y(8)(0) = 1, y(9)(0) = 0.

Consequently, the solution of (21) is

y(x) = 1− 1

2!
x2 +

1

4!
x4 − 1

6!
x6 +

1

8!
x8 + · · ·

which is the closed form solution of the exact solution for the equation (21).
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4. CONCLUSION

In this paper, a simple but efficient Taylor series method applicable for the solution
of both linear and nonlinear Volterra integral equations of second kind with separable
kernels is presented. The method is devoid of complexities associated with some other
conventional methods for obtaining the solution of Volterra integral equations and the
solution is presented in closed form. A form of Pascal triangle is developed for deriving
derivatives of the function y(x). The method does not require linearization, perturbation
or discretization for it to be applied on nonlinear problems. Some test problems in the
literature were solved to illustrate the performance of the proposed new methods.
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