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Abstract
In this paper, we present an efficient algorithm for solving system of second-

order boundary value problems(BVPs) based on a combination of the Laplace
transform and homotopy analysis method(HAM). The proposed technique finds
the solution without any discretization or any restrictive assumptions. The
solution is produces in form of a rapid convergent series. The results of the
numerical examples considered show that the proposed method is applicable and
efficient.
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1 Introduction

In recent years, investigations of systems of boundary value problems have been
the focus of many studies due to their wide range of applicability in physics,
engineering, biology and other fields [3]. However, many classical methods
used to solve second-order initial value problems cannot be applied to solve
second-order boundary value problems. For a nonlinear system of second-order
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boundary value problems, there are few valid methods to obtain numerical
solution [1, 3, 6]. Therefore, attention has been paid to searching for better
and more efficient methods for determining a solution, approximate or exact,
analytical or numerical, to the system of second-order differential equations.
Among the methods that have been developed for handling a system of second-
order boundary value problems are B-spline method [4], Variation iteration
method [3], Sinc-collocation method [16], Chebyshev finite difference method
[6], spline collocation approach [5], and homotopy perturbation method(HPM)
[7].
In this study, we propose a coupled method of Laplace transform and homotopy
analysis method to obtain the solutions of the following nonlinear system of
second-order ordinary differential equations [3].

u′′1 + a1(t)u
′
1 + a2(t)u1 + a3(t)u

′′
2 + a4(t)u

′
2 + a5(t)u2 +G1(t, u1, u2) = f1(t)

u′′2 + b1(t)u
′
2 + b2(t)u2 + b3(t)u

′′
1 + b4(t)u

′
1 + b5(t)u1 +G2(t, u1, u2) = f2(t) (1)

subject to the boundary conditions

u1(0) = 0, u1(1) = 0, u2(0) = 0 and u2(1) = 0 (2)

where 0 ≤ t ≤ 1, G1 and G2 are nonlinear functions of u1 and u2. ai(t),
bi(t), f1(t) and f2(t) are given functions, and ai(t), bi(t), i = 0, 1, · · · 5 are
continuous.

The Laplace transform is a wonderful tool for solving linear differential
equations and has enjoyed much success at this level. However, it is totally in-
applicable to nonlinear equations because of the difficulties caused by nonlinear
terms. Since Laplace Adomian decomposition method (LADM) was proposed
by Khuri [17] and then developed by Khan [18] and Khan and Gondal [19],
the couple methods that are based on Laplace transform and other meth-
ods have received considerable attention in the literature. For instance, in
[20, 22, 23, 24, 25, 26, 27] and in [21] the homotopy perturbation method and
the variational iteration method are combined with the well-known Laplace
transform to develop a highly effective technique for handling many nonlinear
problems.

The homotopy analysis method initially proposed by Liao [2], is based on
homotopy, a fundamental concept in topology and differential geometry. By
means of HAM, one construct a continuous mapping of an initial approxima-
tion to the exact solution of the given equations. An auxiliary linear operator
is chosen to construct such kind of continuous mapping and an auxiliary pa-
rameter is used to ensure the convergence of series solution. The method
enjoys great freedom in choosing initial approximation and auxiliary linear
operators. HAM is an efficient method for solving various form of both lin-
ear and nonlinear problems [2]. Recently, this method has been successfully
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applied to solve different types of nonlinear problems in science and engineer-
ing [8, 9, 10, 11, 12, 13, 14, 15]. All these successful applications verified the
validity, effectiveness and flexibility of the homotopy analysis method.

2 Laplace Homotopy Analysis Method

Consider the system of second-order differential equations [7]

u′′i (t) = fi(t, u1, u2, u
′
1, u
′
2), i = 1, 2 (3)

subject to the boundary conditions

ui(0) = 0, ui(1) = 0 (4)

By applying the Laplace transform, denoted in this paper by L, on both
sides of (3), we get

L {u′′i (t)} = L {fi(t, u1, u2, u′1, u′2)} , i = 1, 2 (5)

Using the differentiation property of the Laplace transform on the LHS, we
have

s2L {ui(t)} − u′i(0)− sui(0) = L {fi(t, u1, u2, u′1, u′2)} (6)

Now, let u′i(0) = ci (7)

On simplifying, we obtain

L {ui(t)} −
ci
s2
− 1

s2
L {fi(t, u1, u2, u′1, u′2)} = 0, i = 1, 2 (8)

The system of nonlinear operators are given as

Ni [φi(t; q)] = L {φi(t; q)} −
ci
s2

− 1

s2
L

{
[fi(t, φ1(t; q), φ2(t; q),

∂φ1(t; q)

∂t
,
∂φ2(t; q)

∂t
)

}
, i = 1, 2 (9)

where φi(t; q) are real functions of t and q.

We construct a homotopy as follows:

(1− q)L {φi(t; q)− ui,0(t)} = q~iNi [φi(t; q)], i = 1, 2 (10)

where q ∈ [0, 1] is an embedding parameter, ~i are nonzero auxiliary param-
eters, ui,0(t) are initial guesses of ui(t) and φi(t; q) are unknown functions.
Obviously, when q = 0 and q = 1 we have

φi(t; 0) = ui,0(t) and φi(t; 1) = ui(t) (11)
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Thus, as q increases from 0 to 1, the solution φi(t; q) vary from the initial
guesses ui,0(t) to the solutions ui(t).
Expanding φi(t; q) in Taylor series with respect to q, we get

φi(t; q) = ui,0(t) +
∞∑
m=1

ui,m(t)qm (12)

where

ui,m(t) =
1

m!

∂mφi(t; q)

∂qm
|q=0 (13)

If the auxiliary the auxiliary parameters hi and the initial guesses are properly
chosen such that the power series (12) converge at q = 1 then we have under
these conditions the series solutions

ui(t) = ui,0(t) +
∞∑
m=1

ui,m(t) (14)

The governing equations can be deduced from the zeroth-order deformation
equations (10).

Define the vectors

~ui,n = {ui,0(t), ui,1(t), ui,2(t), · · · , ui,n(t)} (15)

Differentiating the zeroth-order deformation equations (10) m times with re-
spect to the embedding parameter q, dividing by m! and finally setting q = 0,
we obtain the mth-order deformation equations:

L {ui,m(t)− χmui,m−1(t)} = ~iRi,m(~ui,m−1) (16)

Applying the inverse Laplace transform, we have

ui,m(t) = χmui,m−1(t) + ~iL−1 {Ri,m(~ui,m−1)} (17)

where

Ri,m(~ui,m−1) =
1

(m− 1)!

∂m−1

∂qm−1
{Ni [φi(t; q)]} |q=0, i = 1, 2 (18)

and

χm =

{
0, m ≤ 1
1, m > 1

(19)
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3 Illustrative Examples

In this section, we apply the proposed Laplace homotopy analysis method
to solve some systems of second-order boundary value problems in order to
establish the applicability and the accuracy of the method.

Example 3.1 Consider the linear system of boundary value problems [3, 7]:{
u′′1(t) + tu1(t) + tu2(t) = g1(t)
u′′2(t) + 2tu2(t) + 2tu1(t) = g2(t) 0 ≤ t ≤ 1

(20)
subject to the boundary conditions

u1(0) = u2(0) = 0, u1(1) = u2(1) = 0 (21)

where g1(t) = 2 and g2(t) = −2
The exact solutions of this problem are u1(t) = t2 − t and u2(t) = t− t2
In view of the boundary conditions (21), we determine the initial guesses as

ui,0(t) = 0 (22)

Taking Laplace transform on both sides of system (20) subject to the initial
conditions we have

L {u1(t)} −
c1
s2

+
1

s2
L {tu1(t)}+

1

s2
L {tu2(t)} −

1

s2
L {g1(t)} = 0 (23)

L {u2(t)} −
c2
s2

+
2

s2
L {tu1(t)}+

2

s2
L {tu2(t)} −

1

s2
L {g2(t)} = 0 (24)

The system of nonlinear operators is defined as

N1[φ1(t; q)] = L {φ1(t; q)}−
c1
s2

+
1

s2
L {tφ1(t; q)}+

1

s2
L {tφ2(t; q)}−

1

s2
L {g1(t)}

(25)

N2[φ2(t; q)] = L {φ2(t; q)}−
c2
s2

+
2

s2
L {tφ1(t; q)}+

2

s2
L {tφ2(t; q)}−

1

s2
L {g2(t)}

(26)
and thus

R1,m(~u1,m−1) = L {u1,m−1(t)}−
c1
s2

+
1

s2
L {tu1,m−1(t)}

+
1

s2
L {tu2,m−1(t)} −

1

s2
(1− χm)L {g1(t)} (27)
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R2,m(~u2,m−1) = L {u2,m−1(t)}−
c2
s2

+
2

s2
L {tu1,m−1(t)}

+
2

s2
L {tu2,m−1(t)} −

1

s2
(1− χm)L {g2(t)} (28)

The mth-order deformation equation with ~ = −1 is given by

L {ui,m(t)− χmui,m−1(t)} = −Ri,m(~ui,m−1) (29)

Taking the inverse Laplace transform, we get

ui,m(t) = χmui,m−1(t)− L−1 {Ri,m(~ui,m−1)} m = 1, 2, · · · (30)

where the constants ci (i = 1, 2) in equations (30) are determined by applying
the conditions (21)b.

Now by defining Ui,n(t) =
n∑
k=0

ui,k(t), i = 1, 2 we obtain

U1,1(t) = t2 − t and U2,1(t) = t− t2
which are the exact solutions to this problem.

Example 3.2 Consider the following linear system of second-order bound-
ary value problems [3, 7]:

{
u′′1(t) + (2t− 1)u′1(t) + cos(πt)u′2(t) = g1(t)
u′′2(t) + tu1(t) = g2(t) 0 ≤ t ≤ 1

(31)

subject to the boundary conditions

u1(0) = u2(0) = 0, u1(1) = u2(1) = 0 (32)

where g1(t) = −π2 sin(πt) + (2t− 1)π cos(πt) + (2t− 1) cos(πt) and
g2(t) = 2 + t sin(πt)
The exact solutions of this problem are u1(t) = sin(πt) and u2(t) = t2 − t
We obtain the initial guesses from the boundary conditions (32) as

ui,0(t) = 0 (33)

Taking Laplace transform on both sides of system (31) subject to the initial
conditions we have

L {u1(t)}−
c1
s2

+
2

s2
L {tu′1(t)}−

1

s2
L {u′1(t)}+

1

s2
L {cos(πt)u′2(t)}−

1

s2
L {g1(t)} = 0

(34)

L {u2(t)} −
c2
s2

+
1

s2
L {tu1(t)} −

1

s2
L {g2(t)} = 0 (35)
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The system of nonlinear operators is defined as

N1[φ1(t; q)] = L {φ1(t; q)} −
c1
s2

+
2

s2
L

{
t
∂φ1(t; q)

∂t

}
− 1

s2
L

{
∂φ1(t; q)

∂t

}

+
1

s2
L

{
cos(πt)

∂φ2(t; q)

∂t

}
− 1

s2
L {g1(t)} (36)

N2[φ2(t; q)] = L {φ2(t; q)} −
c2
s2

+
1

s2
L {tφ1(t)} −

1

s2
L {g2(t)} (37)

Thus,

R1,m(~u1,m−1) = L {u1,m−1(t)}−
c1
s2

+
2

s2
L
{
tu′1,m−1(t)

}
− 1

s2
L
{
u′1,m−1(t)

}
+

1

s2
L
{

cos(πt)u′2,m−1(t)
}
− 1

s2
L {g1(t)} (1− χm) (38)

R2,m(~u2,m−1) = L {u2,m−1(t)} −
c2
s2

+
1

s2
L {tu2,m−1(t)} −

1

s2
L {g2(t)} (1− χm)

(39)
The mth-order deformation equation with ~ = −1 is given by

LL {ui,m(t)− χmui,m−1(t)} = −Ri,m(~ui,m−1) (40)

Taking the inverse Laplace transform, we get

ui,m(t) = χmui,m−1(t)− L−1 {Ri,m(~ui,m−1)} m = 1, 2, · · · (41)

where the constants ci (i = 1, 2)in equations (41) are determined by applying
the conditions (32)b.
Thus, the first-order terms are
u1,1(t) = − 1

π2 (2t(π + 1)− π − 1) cos(πt) + 1
π3 (π3 + 4π + 4) sin(πt)− π+1

π2

u2,1(t) = −2 cos(πt)
π3 − t sin(πt)

π2 + t2 − t
(

4
π3 + 1

)
+ 2

π3

ui,m(t), i = 1, 2,m = 2, 3, · · · can be calculated in the same manner.
Now we define the maximum absolute errors for Ui,n as
EUi,n = max |Ui,n(tk)− ui(tk)|, tk = 0.1k, for k = 0(1)10, i = 1, 2
Table 3.1 shows that the errors decrease as the value of n increases.

Example 3.3 In this example, we consider the nonlinear system:

{
u′′1(t)− tu′2(x) + u1(t) = g1(t)
u′′2(t) + tu′1(t) + u1(t)u2(t) = g2(t), 0 ≤ t ≤ 1

(42)
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subject to the boundary conditions

u1(0) = u2(0) = 0, u1(1) = u2(1) = 0 (43)

where g1(t) = t3 − 2t2 + 6t and g2(t) = t5 − t4 + 2t3 + t2 − t+ 2
The exact solutions of this problem are u1(t) = t3 − t and u2(t) = t2 − t
For this problem, we take the initial guesses as

ui,0(t) = 0 (44)

By applying the Laplace homotopy analysis method to (42) subject to the
initial conditions, we have

L {u1(t)} −
c1
s2
− 1

s2
L {tu′2(t)}+

1

s2
L {u1(t)} −

1

s2
L {g1(t)} = 0 (45)

L {u2(t)} −
c2
s2

+
1

s2
L {tu′1(t)}+

1

s2
L {u1(t)u2(t)} −

1

s2
L {g2(t)} = 0 (46)

The system of nonlinear operators is

N1 [φ1(t; q)] = L {φ1(t; q)}−
c1
s2
− 1

s2
L

{
t
∂φ2(t; q)

∂t

}
+

1

s2
L {φ1(t; q)}−

1

s2
L {g1(t)}

(47)

N2 [φ2(t; q)] = L {φ2(t; q)}−
c2
s2

+
1

s2
L

{
t
∂φ1(t; q)

∂t

}
+

1

s2
L {φ1(t; q)φ2(t; q)}−

1

s2
L {g2(t)}

(48)
and thus

R1,m(~u1,m−1) = L {u1,m−1(t)}−
c1
s2
− 1

s2
L
{
tu′2,m−1(t)

}
+

1

s2
L {u1,m−1(t)} −

1

s2
(1− χm)L {g1(t)} (49)

R2,m(~u2,m−1) = L {u2,m−1(t)}−
c2
s2

+
1

s2
L
{
tu′1,m−1(t)

}
+

1

s2
L

{
m−1∑
i=0

u1,i(t)u2,m−1−i(t)

}
− 1

s2
(1− χm)L {g2(t)} (50)

The mth−order deformation equation with ~ = −1 is given by

L {ui,m(t)− χmui,m−1(t)} = −Ri,m(~ui,m−1) (51)

Applying the inverse Laplace transform, we have

ui,m(t) = χmui,m−1(t)− L−1 {Ri,m(~ui,m−1)} (52)
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where the constants ci (i = 1, 2) in equations (52) are determined by applying
the conditions (43)b.
Thus solving (52), for m = 1, 2, · · · , we get

u1,1(t) =
t5

20
−t

4

6
+t3−53

60
t

u2,1(t) =
t7

42
− t

6

30
+
t5

10
+
t4

12
−t

3

6
+t2−141

140
t

u1,2(t) =
t

15120
(35t8−54t7+162t6+252t5−1134t4+2520t3−312t2−1469)

u2,2(t) = − t
2520

(15t6 − 56t5 + 378t4 − 371t2 + 34)
...

The absolute errors |Ui,n(t)− ui(t)| for different values of t and n are tabulated
in Tables 3.2 and 3.3

Table 3.1: Maximum absolute errors for Example 3.2
n 1 3 5 7

EU1,n 1.1× 10−1 1.6× 10−3 2.2× 10−5 3.0× 10−7

EU2,n 5.1× 10−2 8.3× 10−4 1.1× 10−5 1.6× 10−7

Table 3.2: Absolute errors |U1,n(x)− u1(x)| for Example 3.3

x n = 1 n = 3 n = 5 n = 7
0.1 1.2× 10−2 2.6× 10−4 1.3× 10−6 6.0× 10−8

0.2 2.3× 10−2 4.9× 10−4 2.7× 10−6 1.3× 10−7

0.3 3.4× 10−2 6.3× 10−4 4.2× 10−6 2.2× 10−7

0.4 4.3× 10−2 6.7× 10−4 6.0× 10−6 3.3× 10−7

0.5 4.9× 10−2 5.9× 10−4 7.7× 10−6 4.6× 10−7

0.6 5.2× 10−2 3.9× 10−4 9.2× 10−6 5.8× 10−7

0.7 5.0× 10−2 1.3× 10−4 9.9× 10−6 6.4× 10−7

0.8 4.1× 10−2 1.3× 10−4 9.2× 10−6 5.9× 10−7

0.9 2.5× 10−2 2.3× 10−4 6.3× 10−6 3.7× 10−7

Table 3.3: Absolute errors |U2,n(x)− u2(x)| for Example 3.3

x n = 1 n = 3 n = 5 n = 7
0.1 8.7× 10−4 1.9× 10−4 1.4× 10−5 2.9× 10−7

0.2 2.6× 10−3 3.9× 10−4 2.7× 10−5 5.8× 10−7

0.3 5.7× 10−3 6.0× 10−4 3.9× 10−5 8.4× 10−7

0.4 1.0× 10−2 7.8× 10−4 4.9× 10−5 1.0× 10−6

0.5 1.6× 10−2 9.2× 10−4 5.5× 10−5 1.2× 10−6

0.6 2.3× 10−2 9.9× 10−4 5.5× 10−5 1.2× 10−6

0.7 2.7× 10−2 9.7× 10−4 4.9× 10−5 1.2× 10−6

0.8 2.8× 10−2 8.0× 10−4 3.7× 10−5 9.9× 10−7

0.9 2.1× 10−2 4.7× 10−4 2.1× 10−5 6.2× 10−7
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4 Conclusion

We have introduced a coupled method of Laplace transform and homotopy
analysis method (HAM) for the solution of a nonlinear system of second-order
boundary problems. This approach does not involve discretization unlike tra-
ditional techniques used by other numerical algorithms. The solution is given
in a series form which converges rapidly. It is also worth mentioning that the
method is applied without any linearization or restrictive assumptions being
made. The method is simple and highly accurate as evident from the results
of the numerical examples considered
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