BOWEN logo

Please use this identifier to cite or link to this item: ir.bowen.edu.ng:8181/jspui/handle/123456789/1031
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAkinola, E. I.-
dc.contributor.authorAkinpelu, F. O.-
dc.contributor.authorAreo, A. O.-
dc.contributor.authorAkanni, J. O.-
dc.contributor.authorOladejo, J. K.-
dc.date.accessioned2023-04-13T13:42:51Z-
dc.date.available2023-04-13T13:42:51Z-
dc.date.issued2017-
dc.identifier.citationAkinola, E. I., Akinpelu, F. O., Areo, A. O., Akanni, J. O. & Oladejo, J. K. (2017). The mathematical formulation of Laplace series decomposition method for solving nonlinear higher-order boundary value problems infinite domain. International Journal of Innovation and Scientific Research, 28(2), 110-114.en_US
dc.identifier.uriir.bowen.edu.ng:8080/jspui/handle/123456789/1031-
dc.description.abstractThis paper presents a numerical method called Laplace Transform Series Decomposition Method (LTSDM) for solving fifth and sixth order boundary value problems in a finite domain with two point boundary conditions is presented. The method has to do with the combination of Laplace Transform method, series expansion and Adomian polynomial. The numerical results obtained using LTSDM are compared with the exact solutions, Differential Transform and Decomposition Methods. The results showed that the method is quite accurate, reliable, powerful, efficient, and is practically well suited for use in the problems considered.en_US
dc.language.isoenen_US
dc.publisherInternational Journal of Innovation and Scientific Researchen_US
dc.subjectAdomian polynomialen_US
dc.subjectBoundary value problems,en_US
dc.subjectHigher-orderen_US
dc.subjectLaplace methoden_US
dc.subjectSeries expansionen_US
dc.titleThe mathematical formulation of Laplace series decomposition method for solving nonlinear higher-order boundary value problems infinite domainen_US
dc.typeArticleen_US
Appears in Collections:Articles

Files in This Item:
File Description SizeFormat 
4. MATHEMATICAL FORMULATION OF LTSDM.pdf101.88 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.