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A B S T R A C T  
 

 

Radio refractivity is very crucial in the optimal performance of radio systems and is one of the attributes 

that affect electromagnetic waves in the troposphere. This study presented a comparison of different 

variants of recurrent neural networks to predict radio refractivity index. The radio refractivity index is 
predicted based on forty-one years (1980 to 2020) metrological data obtained from the MERRA-2 data 

re-analysis database. The refractivity index was computed using International Telecommunication Union 

(ITU) standard. The correlation refractivity index was categorized into strong, weak and no correlation. 
Rainfall, relative humidity, and air pressure fall in the first category, the temperature falls in the second 

category while wind speed falls in the last one. The true future and predicted values of the radio 

refractivity index are close with GRU performing better than the other two models (LSTM and BiLSTM) 
which proves the accuracy of the proposed model. In conclusion, the proposed model can establish a 

radio refractivity status of locations at different times of the season, which is of great importance in the 

effective design, development, and deployment of radio communication systems. 

doi: 10.5829/ije.2022.35.04a.21 
 

 
1. INTRODUCTION1 

 

Wireless communication (WC) is the transmission of 

information from the source to the destination without a 

physical connection. The channel of propagation of 

signals is the atmosphere which consist of three layers: 

troposphere, stratosphere, and ionosphere. The 

troposphere and ionospheric possess challenges ranging 

from scattering, absorption, obstruction and so on which 

cause severe impairment on the received signal. In the 

troposphere, there is the presence of some meteorological 

parameters such as temperature, relative humidity and 

pressure which varies in quantity per time and are 

responsible for radio signal disorientation and 

consequently, corruption of the transmitted signals. 

Radiowave [1] is one of the components of the 

electromagnetic spectrum and a means of signal 

propagation in the WC channel. It was first discovered by 
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a Scottish Mathematician James Clerk Maxwell in the 

mid- 1860. The prediction of Maxwell was verified in the 

laboratory by Marconi in 1899 [2]. Radio waves are 

electromagnetic radiation with a wavelength falling 

between 3cm and 30km and frequency is between 3kHz 

and 3GH. Radio waves travel at the speed of light and 

thus enhances the speed at which information is received. 

Waves are characterized by reflection, interference, 

diffraction, absorption, scattering, and refraction. The 

heterogeneous nature of the tropospheric layers, due to 

the presence of meteorological parameters enhances large 

scale variation in the signal strength and direction [3]. 

Consequently, rapid fluctuation of the signal over some 

time and distance occurs. Other physical impairments 

suffered by WC in a refracted channel include sub-

refraction, super refraction and ducting and these 

impairments cause performance degradation and drop 

calls at the receiving end [4]. Several researchers have 
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resulted in taking measurements of metrological data in 

the troposphere during wet and dry seasons within a 

certain period. These measurements were taken to study 

the trend of the effect of these parameters on the received 

signal. Consequently, the refractive nature of the WC 

channel can be observed and necessary action by network 

designers and operators could be taken to ameliorate the 

effect of the refractive nature of the troposphere. To 

overcome the challenges in measurement taken for 

estimating the radio refractivity and refractivity gradient, 

which could be because of human and equipment error, 

this research, therefore, focuses on developing a model 

using a machine learning approach. Machine Learning 

(ML) is a process of developing a machine that will 

enable it to learn without programming the machine 

explicitly [5]. ML process includes data collection of 

historical meteorological data, data preprocessing the 

data, features extraction, algorithm training, model 

evaluation, and model deployment. The focus of this 

work is to create a reliable platform on metrological data 

perception as well as predicting radio refractivity index 

for the communication design process. Due to the 

challenges faced by engineers, researchers and designers 

of wireless communication systems, this work presents a 

suitable recurrent neural network model for predicting 

radio refractivity index using different meteorological 

parameters. This model will help during the condition of 

the ducts by hidden from sight in residential and 

commercial buildings, and performance issues that may 

stay undetected. Thus, for effective propagation of radio 

waves through the atmosphere, there is a need to 

continuously understudy the variation of these parameters 

over some time and the result thoroughly analyzed to aid 

the planning of network providers in rendering quality 

services to their customers [6]. Gao et al. [7] examined 

the effect of moisture and temperature on radio 

refractivity and its influence on radar ray path. Analysis 

of the different radio refractivity concerning atmospheric 

temperature and moisture was done. The results showed 

that moisture gradient is a significant contributor to radio 

refractivity gradient at the lower troposphere. Hence, 

moisture has a more significant influence on the radar ray 

path calculations than temperature. Adediji et al. [8] 

looked at the radio refractivity gradient and its effect on 

the earth radius factor (k factor) over Akure, 

Southwestern Nigeria. Okoro and Agbo [9], Oluwole [10] 

worked on Meteorological Parameters and the effect on 

tropospheric radio refractivity for Akure South –West, 

and in Minna north central Nigeria. Oluwole [10] 

reported that the variation in radio wave propagation in 

Akure is because of changes in temperature, pressure, and 

humidity. However, Data for the daily intervals of these 

parameters in the troposphere for Akure were obtained 

from Nigeria Meteorological Agency (NIMET) for the 

year 2013. The result revealed that Akure has the lowest 

radio refractivity in January (dry season) the highest radio 

refractivity in August (wet season) due to an increase in 

the humidity and temperature in the troposphere. The 

model used is not a predictive one and it was used to 

capture only Akure. Study by Amajama [11] established 

a mathematical relationship between radio refractivity 

and its meteorological components with a new 

mathematical equation to determine radio refractivity. 

The study revealed the correlations between radio 

refractivity and metrological parameters which was given 

as atmospheric temperature: 0.99; atmospheric pressure: 

0.91; and relative humidity: 0.99. Zhang et al. [12] 

evaluate the performance of different machine-learning-

based models in comparison to the empirical model for 

the prediction of radio signal path loss. It was concluded 

that machine-learning-based models perform better in 

terms of prediction accuracy and computational 

efficiency than the empirical model. However, the 

research is not in any way related to the propagation 

condition of radio signals in southwestern Nigeria. Neural 

Networks had been used in predicting metrological 

parameters for certain regions such as Pakistan [13] and 

West Java [14]. Applying neural networks to 

metrological data in Nigeria will help in gaining useful 

insight. Thus, this research aims to bridge the gaps in 

knowledge by developing a radio refractivity predictive 

model using long-short term memory (LSTM), Bi long-

short term memory (BiLSTM) and Gated Recurrent Unit 

(GRU) neural network. 

 

 
2. ARTIFICIAL NEURAL NETWORK 

 
An artificial neural network is a machine learning process 

that uses a similar principle of operation to the working 

operation of a human brain. The neural networks used in 

deep learning consists of several layers connected. The 

network learns from a massive volume of data and uses 

algorithms to train a neural network. There are several 

popular neural networks which include a feed-forward 

neural network [15] which is used in general regression 

and classification problems. Convolutional neural 

network (CNN) is generally used for image recognition 

[16], deep neural network (DNN) is for acoustic 

modelling [17]. A deep belief network (DBN) has been 

used for cancerous cell detection [18] while a recurrent 

neural network (RNN) is generally used in speech 

recognition [19].  
 
 

2. 1. Recurrent Neural Network (RNN)           In feed-

forward network, information flow in the forward 

direction from the input nodes without loops or cycle in 

the network. Decisions are based on the current input 

without memory of the past and future. FFN is greatly 

impaired by the inability to handle sequence data 
because; it does not have a scope of memory or time.  
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RNN is an improved feed-forward network that 

allows previous outputs to be used as inputs. The internal 

state (memory) in RNN is used to process sequences of 

inputs. This network architecture has been applied in 

natural language processing problems [20] such as text 

mining, sentiment analysis and machine translation. The 

network can be represented mathematically as: 

For the given hidden layers, the new state is given as: 

ℎ(𝑡) =  𝑓𝑐(ℎ(𝑡−1), 𝑥(𝑡))  (1) 

where 𝑓𝑐 is the function with c parameter, ℎ(𝑡 − 1) is the 

previous state and 𝑥(𝑡) is the input vector at time step 𝑡. 

Applying activation function gives: 

ℎ(𝑡) =  𝑡𝑎𝑛ℎ(𝑊ℎℎℎ(𝑡−1) + 𝑊𝑥ℎ𝑥(𝑡))  (2) 

and the output state is given as: 

𝑦(𝑡) =  𝑊ℎ𝑦ℎ(𝑡)  (3) 

W is the input weight, h is the hidden vector for a single 

neuron, Whh is the previous weight, Whx is the weight at the 

current input state, and tanh is the activation function. 

RNN structure can be classified into four categories: 

multiple-input, multiple-output (MIMO), single-input, 

single-output (SISO), single-input, multiple-outputs 

(SIMO) and multiple-input, single-output (MISO). RNN 

is greatly affected by the problems of vanishing and 

exploding gradient. This makes RNN training a very 

difficult task. There is also a limitation on the length of 

sequence data it can process when singing hyperbolic 

tangent function (tanh) or Rectified Linear Unit (ReLu) 

activation function. Thus, the need for better variants of 

this network architecture. 

 

2. 2. Long-Short Time Memory (LSTM) Network 
Architecture                Long Short-Term Memory (LSTM) 

network was developed to address the problem of the 

RNN which is the vanishing gradient problem. LSTM is 

capable of processing and predicts time series data. This is 

achieved using the back-propagation method. The 

architecture of the LSTM network consists of three gates: 
1. Input gate. This gate determines the values to go 

through using a sigmoid function while the tanh 

function determines the level of importance of the 

value through weights. This weight ranges from -1 

to 1 as represented in equation: 

𝑖𝑡 = 𝜎(𝑊𝑖[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)  (4) 

𝑐𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐)  (5) 

2. Forget gate decide, using the sigmoid function, input 

values to be discarded from the network. This is 

done by examining the values of the previous state 

(ht-1), the input (xt) and outputs for each number in 

the cell state (Ct-1). When the value is 0, the value is 

omitted while the value 1 is kept. The forget gate is 

represented in Equation (6): 

𝑓𝑡 = 𝜎(𝑊𝑓[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)  (6) 

3. The gate in this architecture is the output gate. This 

gate has a sigmoid function which decides the values 

to let through either 0 or 1. The tanh function in this 

gate gives weights to the values which reflect the 

level of importance. The final out is further 

multiplied with the output of a sigmoid function. 

𝑜𝑡 = 𝜎(𝑊𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)  (7) 

ℎ𝑡 = 𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ(𝑐𝑡)  (8) 

 

Gated Recurrent Unit (GRU) 

GRU is another variant of Recurrent Neural networks with 

similar architecture as LSTM. The cell state is replaced 

with a hidden state in the transfer of information. 

Furthermore, unlike the LSTM with three gates, GRU has 

two gates: a reset gate and an update gate. The update gate 

is like the forget and input gate in an LSTM. This gate 

determines the type of information to discard or accept. 

The reset gate is used to decide the level of past 

information to forget. it has been shown that due to fewer 

operations in GRU, the training time is shorter than 

LSTM. 

The reset gate is given as:  

𝑟𝑡 = 𝜎(𝑊(𝑖𝑟)𝑥̅𝑡 + 𝑊(ℎ𝑟)ℎ𝑡−1  (9) 

The updated gate is given as: 

𝑧𝑡 = 𝜎(𝑊(𝑖𝑧)𝑥̅𝑡 + 𝑊(ℎ𝑧)ℎ𝑡−1  (10) 

The process input is given as: 

ℎ̃𝑡 = tanh (𝑊(𝑖ℎ̃)𝑥̅𝑡 + 𝑊(ℎℎ)̃ℎ𝑡−1  (11) 

The hidden state update is given as: 

ℎ𝑡 = (1 − 𝑧𝑡) ∗ ℎ𝑡−1 + 𝑧𝑡 ∗ ℎ̃𝑡  (12) 

And the output is given as:  

𝑦𝑡 = ℎ𝑡  (13) 

 

 

3. METHODOLOGY  
 

3. 1. Proposed Model              The research work involves 

the collection of data from meteorological database 

parameters. The dataset was analyzed by clustering to 

gain insight into data and to help data simplification 

which may be needed before further processing. Neural 

networks extract relevant features from the dataset for 

training to predict the radio refractivity index of an 

environment. The model was compared with other 

statistical developed models for evaluation and 

validation. The performance of the proposed model was 

further evaluated on some selected metrics such as Mean 

Average Error (MAE), Root Mean Square Error (RMSE) 

and R square. 
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3. 2. Study Area              The stations used for this research 

consists of the following Abuja, Awka, Calabar, Enugu, 

Ibadan, Ikeja, Ilorin, Kaduna, Maiduguri, Port Harcourt, 

Sokoto and Yola. These stations were selected across the 

entire country (see Table 1).  

These stations are divided into different climatic areas 

to show the effect of radio transmission across the entire 

country. Figure 1 shows the station presents in Nigeria. 

 

3. 4. Data Collection             The data used in this study 

consists of monthly rainfall, air temperature, water  

 

 
TABLE 1. The coordinate of the stations used  

Stations Longitude 0N Latitude 0E 

Abuja 9.0723 7.4913 

Awka 6.2105 7.0722 

Calabar 4.9828 8.3345 

Enugu 6.4599 7.5489 

Ibadan 7.4020 3.9173 

Ikeja 6.6059 3.3491 

Ilorin 8.5000 4.5500 

Kaduna 10.6093 7.4295 

Maiduguri 11.8333 13.1500 

Port Harcourt 4. 7774 17.0134 

Sokoto 13.0058 5.2475 

Yola 9.2035 12.1495 

 
Figure 1. Map showing selected stations across Nigeria 

 

 

vapour, pressure, relative humidity, wind speed and 

direction for twelve stations which were obtained from 

the archive of the HelioClim website of soda 

(http://www.soda-pro.com) of MERRA-2 meteorological 

re-analysis data as recommended by Gelaro et al. [21]. 

The assessment of the data was on 22nd August 2020. The 

data of forty-one years spanning from 1980 to 2020 were 

obtained as a monthly average for January to December 

of every year in comma-separated value (CSV) data 

format. 
 

3. 3. Dataset Preprocessing                 Radio refractivity 

and radio refractive index data were computed using the 

formula provided by the Radio communication sector of 

the International Telecommunication Union (ITU-R). 

ITU-R is saddle with the responsibility of ensuring 

efficient and economical use of the radiofrequency 

spectrum by all radio communication services. This is 
 

 
TABLE 2. Selected Metrological Dataset for Ibadan Station 

Date Station 
Temp. 

(K) 
RH (%) 

Pressure 

(hPa) 

Rainfall 

(kg/m2) 

Wind Speed 

(m/s) 

Wind direction 

(deg) 

Refractivity 

Index 

1980-01-31 Ibadan 298.56 78.48 990.22 43.64 1.33 219.77 2576.23 

1980-02-28 Ibadan 299.05 78.77 988.83 68.55 1.71 219.13 2576.34 

1980-03-31 Ibadan 299.27 81.01 989.22 105.14 2.35 213.82 2645.25 

1980-04-30 Ibadan 299.09 83.47 989.43 90.25 2.48 214.60 2729.19 

1980-05-31 Ibadan 298.40 86.54 991.07 151.17 2.19 220.69 2844.09 

 

 

done by the provision of radio refractive index, n, and is 

computed by Equation (14):  

𝑛  1  𝑁  10−6  (14) 

The radio refractivity, N, is given as: 

𝑁 =  77.6
𝑃𝑑

𝑇
+ 72

𝑒

𝑇
+  3.75 105  

𝑒

𝑇2  (15) 

where the dry component of the radio refractivity, 𝑁𝑑𝑟𝑦 is 

given as: 

𝑁𝑑𝑟𝑦 = 77.6
𝑃𝑑

𝑇
  (16) 

and the wet component, 𝑁𝑤𝑒𝑡  is: 

𝑁𝑤𝑒𝑡 = 72
𝑒

𝑇
+  3.75 105  

𝑒

𝑇2  (17) 

𝑃𝑑and P is the dry and total atmospheric pressure 

respectively, while e is the water vapour pressure all in 

(hPa). T is the absolute temperature given in Kelvin. 

Since 𝑃𝑑 = 𝑃 − 𝑒, Equation (1) can be rewritten as: 

𝑁 =  77.6
𝑃

𝑇
+ 72

𝑒

𝑇
+  3.75 105  

𝑒

𝑇2
  (18) 

The relationship between water vapour pressure e and 

relative humidity is given as follows: 

http://www.soda-pro.com/
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𝑒 =
𝐻.𝑒𝑠 

100
  (19) 

𝑒𝑠 = 𝐸𝐹. 𝑎. 𝑒𝑥𝑝 [
(𝑏−

𝑡

𝑑
).𝑡

𝑡+𝑐
]  (20) 

𝐸𝐹𝑤𝑎𝑡𝑒𝑟 = 1 + 10−4[7.2 + 𝑃. (0.00320 +
5.910−7. 𝑡2)]  

(21) 

𝐸𝐹𝑖𝑐𝑒 = 1 + 10−4[2.2 + 𝑃. (0.00382 +
6.410−7. 𝑡2)]  

(22) 

where t: temperature (oC), P: pressure (hPa), H: relative 

humidity (%), 𝑒𝑠: saturation vapour pressure (hPa) at the 

temperature t (OC) and the coefficients a, b, c, and d are: 

for water: a = 6.1121, b = 18.678, c = 257.14, d = 234.5. 

This is valid between -40 and +50o 

for ice: a = 6.1115, b = 23.036, c = 279.82, d = 333.7. This 

is valid between -80o and 0o [6]. 

 

3. 5. Evaluation Metrics              The developed model 

was evaluated using the following statistical methods: 
1. Mean Average Error (MAE): this is given in equation: 

𝑀𝐴𝐸 =  
∑ |𝑚𝑖−𝑝𝑖|𝑛

𝑖=1

𝑛
  (23) 

2. Root mean square error which is given in the equation 

𝑅𝑀𝑆𝐸 =  √
∑ (𝑚𝑖−𝑝𝑖)2𝑛

𝑖=1

𝑛
  (24) 

R squared is given as: 

𝑅2 =
(∑ (𝑃𝑖−𝑃̅) (𝑃′

𝑖−𝑃̅′)𝑛
𝑖=1 )2

∑ (𝑃𝑖−𝑃̅)𝑛
𝑖=1

2
∑ (𝑃′

𝑖
−𝑃̅′)2𝑛

𝑖=1

  (25) 

where 𝑃𝑖  is the observed data, 𝑃′
𝑖 is the simulated data, 𝑃̅ 

is the mean of the observed data, 𝑃̅′ is the mean of the 

simulated data and e is the model error. Where 𝑚𝑖 is the 

prediction data while 𝑝𝑖  pi is the observed data, n is the 

number of errors 

 

3. 6. Open-source Tools                The research relied 

heavily on open-source software. Python 3.8 was the 

chosen programming language that has the capability of 

importing libraries such as Numpy, Pandas, and Sckit-

Learn for data preprocessing and data management. 

TensorFlow [22] and Keras [23] provided the framework 

for training the algorithms. Matplotlib [24] library helped 

in creating figures and graphs. 
 

 

4. RESULTS AND DISCUSSION 
 
4. 1. Data Visualization                The effect of 

environmental parameters on the refractivity of a radio 

waves can be grouped into three categories from Figure 

2(a) to 2(f). This is categorized as follows: 
1. Weak Correlation: Figure 2(a) shows the correlation 

between refractivity and temperature. The effect of the 

increase in temperature on radio refractivity is not 

apparent, although the temperature was at its highest in 

February before it started falling to rise again in 

November. It can be deduced that the effect of 

temperature contributes little to variation of radio 

refractivity index in this region as proven by [25].  

2. Strong Correlation: Figures 2(b), 2(c) and 2(d) are 

plots of refractivity against rainfall, relative humidity, and 

pressure respectively. The result revealed a strong 

correlation between each of these features and radio 

refractivity. It can be seen, from Figure 2(b), that as the 

rainfall increases, the radio waves refractivity increases 

as well for the number of years considered. The Result 

from Figures 2(b), 2(c) and 2(d) agree with several studies 

[25, 26]. 

3. No Correlation: The relationship between wind speed, 

wind direction and refractivity does not show any 

correlation as shown in Figures 2(e) and 2(f). 

 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 



S. Adebayo et al. / IJE TRANSACTIONS A: Basics  Vol. 35, No. 04, (April 2022)   810-818                                              815 
 

 
(e) 

 
(f) 

Figure 2. Explanatory Data Analysis of the refractivity 

against various metrological parameters 

4. 2. Dataset Distribution Pattern                The 

metrological dataset for the considered location is 

presented in Table 3. The 491-dataset span over 41 years. 

The minimum and maximum temperatures are 295.03K 

and 301.39K respectively. The relative humidity, within 

these years, ranges between 51.13 and 90.06 while the 

atmospheric pressure is between 987.37 and 993.81. The 

rainfall is at its lowest mostly in December or January, 

while it is at its highest in July. The rainfall minimum and 

maximum datasets are between 0.01 and 638.32. The 

radio refractivity index values fall between 1677.02 and 

2986.68. 

 

4. 3. Training and Test Dataset              Figure 3 shows 

the split ratio of the dataset into train and test sets. 80% 

of the dataset was set for the training set while the 

remaining 20% was used for the test set. The training 

dataset span from 1980 to 2012 while the test dataset is 

from 2013 to 2020. 

 
 

TABLE 3. Descriptive statistics of the measured meteorological data for input to RNN 

Statistical Parameter T (K) RH (%) P (hPa) RF (mm) Refractivity Index 

Count 491.000000 491.000000 491.000000 491.000000 491.000000 

Mean 298.260061 82.325336 990.575112 178.840035 2708.644544 

Std 0.974740 7.045053 1.311667 141.762511 234.514598 

Min 295.030000 51.130000 987.370000 0.010744 1677.023932 

25% 297.590000 78.725000 989.600000 57.609324 2578.606102 

50% 298.200000 85.710000 990.470000 141.306552 2809.317710 

75% 298.995000 87.370000 991.620000 285.793902 2882.642596 

Max 301.390000 90.060000 993.810000 638.320680 2986.682195 

 

 

 
Figure 3. Train and test set split ratio of 4 to 1 

 

 

4. 4. Performance of the Training Algorithm              
Table 4. Shows the performance of LSTM, BiLSTM and 

GRU models based on three evaluation metrics: R2, MAE 

and RMSE. The architecture of the models is greatly 

determined by the neurons in the hidden layers as well as 

the hyper-parameter turning. To obtain the optimal 

architecture, the hidden layers were varied from two to 

five, with each layer containing thirty neurons. The 

coefficient of determination (R2) for LSTM, BiLSTM and 

GRU with 2 layers is 0.84, 0.79, 0.87. This shows that the 

GRU model performs better. Furthermore, the 

performance of the model reduces as the complexity of 

the model increases. R2 value reduces from 0.87 to 0.71 

when the layers of the network were increased from 2 to 

5. The MAE and RMSE values reveal that with an 

increase in neurons, GRU and BiLSTM tend to 

marginally minimize prediction errors in comparison 

with the LSTM neural network model. GRU 

outperformed both the BiLSTM and LSTM with just a 

marginal gap. Table 4 also shows that the MAE and 

RMSE in radio refractivity index prediction using GRU 

with one hidden layer has the lowest error.  
Furthermore, the difference in the performance of 

LSTM, BiLSTM and GRU in radio refractivity index 

prediction in terms of training and validation loss is 

presented in Figure 3. The minimum training and 

validation cost (loss) functions are 0.0105 and 0.0145 at 

epoch 87th for BiLSTM, 0.0156 and 0.0160 at 73rd for 

LSTM and 0.0153 and 0.0112 at epoch 67th for GRU. 

This shows that the GRU model has a faster convergence 
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time, although BiLSTM has the lowest cost function. The 

training process was stopped when the validation error 

trend changes from descending to ascending to avoid 

model overfitting.  

Figure 4 shows the radio refractivity index 

predictions for the 3 trained models using 20% of the 

dataset (test set). All the models performed well because 

the predicted values are very close to the true future 

values (see Figure 5). 

Bazoobandi [27] stated that a wavelet neural network 

has two types of parameters, namely wavelet function 

parameters (translation, dilation) and the weights between 

the hidden layer and output layer.  

 

 
TABLE 4. Performance of radio refractivity index prediction for different RNN variants using statistical metrics 

Hidden Layer 
LSTM BILSTM GRU 

MAE (unit) RMSE R2 MAE (unit) RMSE R2 MAE (unit) RMSE R2 

2 57.08 74.75 0.84 53.07 86.12 0.79 51.10 67.78 0.87 

3 60.25 78.45 0.83 53.11 86.34 0.79 52.68 67.85 0.87 

4 59.17 97.74 0.73 54.02 87.37 0.79 71.03 85.83 0.79 

5 60.93 85.98 0.79 67.92 92.29 0.76 80.54 100.77 0.71 

 

 

 

 
(a) 

 
(b) 

 
(c) 

Figure 4. Performance of Model Training against validation 

Loss 

 

 

 
(a) 

 
(b) 

 
(c) 

Figure 5. Prediction Performance of LSTM, BiLSTM & 

GRU 
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5. CONCLUSION 
 

Radio refractivity is an important feature in the behavioral 

patterns of electromagnetic waves, which translate to the 

performance of the communication systems. The focus of 

this study is to present a comparison of different variants 

of recurrent neural networks to predict radio refractivity 

index. The radio refractivity index was predicted based 

on forty-one years (1980-2020) metrological data. These 

data are categorized as temperature, pressure relative 

humidity and rainfall, and they were obtained from the 

website of Solar Radiation Data (SoDa) database. The 

refractivity index was computed using International 

Telecommunication Union (ITU) standard. The data were 

analyzed through the explanatory data analysis (EDA) 

method for better perception. Long- and short-term 

memory (LSTM), Bi-Long- and short-term Memory 

(BiLSTM) and Gated Recurrent Unit (GRU) neural 

networks were trained to learn features from the dataset. 

The refractivity index for the year 2021 was predicted 

based on the knowledge learned from the previous forty-

one years. The trained model’s predictions and estimation 

were validated against each other. The correlation of the 

features considered concerning the radio refractivity 

index was categorized into strong, weak and no 

correlation. Rainfall, relative humidity, and pressure fall 

in the first category, the temperature falls in the second 

category while wind speed falls in the last. The true future 

and predicted values of the radio refractivity index are 

close with GRU performing better than the other two 

models (LSTM and BiLSTM) which proves the accuracy 

of the proposed model. The proposed model can establish 

a radio refractivity status of locations at different times of 

the season, which is of great importance in the effective 

design, development, and deployment of radio 

communication systems. Therefore, this research 

recommends to the government of the Federal Republic 

of Nigeria, to create research centres for data collection 

and analysis. 
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Persian Abstract 

 چکیده
ی گذارد. این مطالعه فر تأثیر مفرکانس رادیویی در عملکرد بهینه سیستم های رادیویی بسیار حیاتی است و یکی از ویژگی هایی است که بر امواج الکترومغناطیسی در تروپوس

شناختی چهل و ههای اندازست رادیویی بر اساس دادهمقایسه ای از انواع مختلف شبکه های عصبی بازگشتی را برای پیش بینی ضریب شکست رادیویی ارائه کرد. ضریب شک

شود. ضریب شکست با استفاده از استاندارد اتحادیه بین المللی مخابرات بینی میپیش MERRA-2های آمده از پایگاه داده تحلیل مجدد دادهدست( به0101تا  0891یک ساله )

(ITU) می گیرند،  رمحاسبه شد. ضریب شکست همبستگی به دو دسته قوی، ضعیف و بدون همبستگی طبقه بندی شد. بارندگی، رطوبت نسبی و فشار هوا در دسته اول قرا

ستند که بهتر از دو مدل دیگر ه GRUشده ضریب شکست رادیویی نزدیک به بینیدما در دسته دوم و سرعت باد در دسته آخر کاهش می یابد. آینده واقعی و مقادیر پیش

((LSTM  و  (BiLSTM)لف های مختها را در زمانرادیویی مکان کانسرفتواند وضعیت کند. در نتیجه، مدل پیشنهادی میکنند که دقت مدل پیشنهادی را ثابت میعمل می

 یت بالایی برخوردار است.های ارتباط رادیویی از اهمفصل ایجاد کند که در طراحی، توسعه و استقرار مؤثر سیستم
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