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Abstrace
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This paper presents new collocation approaches for the numerical solutions of
linear and nonlinear foruth-ovder Volterra integro-differential equations. These
approaches invelve the use of Chebyshev and Berstein polynomials as basis
functions. Approximations to the lower order devivatives of the function through
suceessive integration of Chebyshev and Berstein polynomialy to the highest order
derivatives are generated. We successfully implemented the new approaches on
both linear and nonlinear integro-differential equations. Numerical resulls show
that the new methods are aceurate and highly promising in comparison with other
numerical methods,
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1.0 Introduction
We consider the fourth-order integro-differntial equation of the form:

") = L) A+ [ (U V() + WO Yt &

With the boundary conditions:
X)) =0y, Y()=a, Y(x,)=/lh (2)
where v € (x,,x,) and F* is a real nonlinear continuous function, A, a,, a,, /3, and f,are real constants, and f, g and h are

given and can be approximated by Taylor polynomials [1].

Integro-differential equations are usually difficult to solve analytically and these have been of great interest to many researchers.
Numerical methods for solution of linear and nonlinear integro-differential equations have been studied by authors [1-9].

A standard method for solving integro-differential equations is the collocation method, where one looks for an approximate solution
in a finite dimensional space and determines the approximate solutions by requiring that after substituting the approximate solution
into the original equation, the equality would hold at certain points (so-called collocation points [2]). Collocation method is a simple
and yet powerful method for solving both linear and nonlinear boundary value problems of ordinary differential equations, partial
differential equations and integro-differntial equations.

Collocation method has successful been applied to many boundary value problems. For example, Abubakar and Taiwo [3] solved
Iredholm-Volterra integro-differential equation with the method, Venkatesh et. al [4] employed wavelet collocation method for
solving nonlinear integro-differential equation while Sweilam et al. [5] used Pseudospectral collocation method for solving fourth-
order integro-differential equations,

In this paper, we proposed and applied Multiple Integral Collocation Method (MICM) for solving fourth-order integro-differential
equations of the form of equations (1) and (2). The use of the proposed method is justified by the interesting properties of the
Chehyshev and Berstein polynomials used as busis functions,

This paper is organized as follows: In Section 2, we describe the properties of Chebyshev and Berstein polynomials. In Section 3,
we discuss the solution technique while numerical examples are presented in Section 4. Finally, concluding remarks are given in
Section 5.
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Substituting equation (35) into equation (33), we obtain a residual equation which is collocated al points
J=2e )

Using the boundary conditions (34), we obtain extra four equations
residual equation having collocated it at X = X using (36). Thus, we get the following results
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methods are in excellent agreement with the exact solutions. The solutions obtaimed are valid in the given domain and for betier
results; using laree numbers N and m are recommended

Table 1: Comparison of Absolute Errors for Example 1

X Exact Solution CMICM BMICM OHAM|[1] MWR]6]

0 1.000000000 0 0 0 ()

0.1 1.110517091 2.500E-17 2.500E-17 7.565-12 4 824E-04

0.2 1.244280551 71.3001:-17 736017 2.203-11 | . 489E-03

03 1.404957642 1418L-16 1.418E-16 1.2801-11 2.500E-03

04 1.5396729879 224E-16 2.242L-16 2.349E-11 3.174E-03

03 1 824360033 3168116 3.168E-16 5.993E-11 3.339E-03

0.0 2093271280 4. 1421-10 4.140E-16 9.569E-11 2.976E-03

0.7 2409626895 5.124E-16 5.122E-16 1.001E-10 2.199E-03

0.8 2.780432742 6.066E-16 6.065E-16 6.603E-11 1.229E-03

0.9 3213642800 6.923E-16 6.923:-16 1.875E-11 3.736E-04

1.0 3.718281825 4441E-16 4.441E-16 4.574E-14 4.390E-10

Table 2: Comparison of Absolute Errors for Example 2

X Exact Solution CMICM BMICM OHAM[]] MWR]6]

0.0 1.000000000 0 () 0 ()

0.1 1.105170918 3.476E-13 3.476E-13 2 692E-08 3.448E-02

0.2 1.221402758 1.223E-12 1.223E-12 7.684E-08 1.216E-03

0.3 1.349858808 2.375E-12 2.375E-12 1.124E-07 2.038E-03

0.4 1.491824698 3.552E-12 3.552E-12 1.174E-07 2.588E-03

0.5 1.648721271 4.503E-12 4.503E-12 9.530E-08 2.721E-03

(.6 1.822118800 4.977E-12 4.977E-12 5.861E-08 2.426E-03

0.7 2.013752707 4.732E-12 4.732E-12 2.653E-08 1.793E-03

0.8 2.225540928 3.568E-12 3.568E-12 8.508E-09 1.002E-03

0.9 2.459603111 1.552E-12 1.552E-12 1.843E-09 3.044E-04

1.0 2.718281828 4.441E-16 4.441E-16 4.590E-10 4.590E-10
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