BOWEN UNIVERSITY, IWO, OSUN STATE, NIGERIA COLLEGE OF AGRICULTURE, ENGINEERING AND SCIENCES PHYSICS PROGRAMME

FIRST SEMESTER EXAMINATION

2022/2023 SESSION

COURSE TITLE: PRACTICAL PHYSICS AND TREATMENT OF DATA I

COURSE CODE: PHY 391 DATE: FEBRUARY 13, 2023

TIME: 3:30-6:30PM

INSTRUCTION: Answer question one and any other two

Question One

To determine the acceleration due to gravity of a simple pendulum, use the setup in the figure below to obtain various data.

From theory, the period of oscillation of a simple pendulum is related to length and acceleration due to gravity as in the equation,

$$T = 2\pi \sqrt{\left(\frac{L}{g}\right)} \tag{1}$$

The length (L=100cm) is measured as the total length from the rigid support to the equilibrium position. Record a total of eight (8) measurements of length = 90cm, 80cm, 70cm, 60cm, 50cm, 40cm, 30cm, and 20cm.

Tabulate your results as shown in table 1 below.

Take: $\pi = 3.142$

Table 1

ations Period T(s)	$T^2(s^2)$
_	reriod 1(s)

Plot a suitable graph from the relation of equation above. (1)

- (ii) Determine the slope and the value of 'g' in m/ s²
- (iii) What is the acceleration due to gravity in a region where a simple pendulum having a length 75.00cm has a period of 1. 7375s?
- (iv) State five (5) apparatus used to perform this experiment.
- (v) State two (2) precautions taken when performing the experiment.

30 marks

Question Two

The equation below is suggested for the evaluation of the dependent and independent quantity 'x' and 'y'.

$$y = Ax^n$$

where A and n are constants respectively.

The data in table 2 were obtained while performing the experiment in the laboratory.

Table 2

x	1.60	2.50	4.00	6.40	10.00	15.90	25.10
y	1.86	2.50	3.16	4.07	5.37	6.61	8.71

- a) Obtain and tabulate the values of functions of x and y to be plotted against each other.
- b) Plot a suitable graph, obtain the slope and intercept.
- c) Hence, determine the values of A and n.

20 marks

Question Three

a) The following readings in the table 3 were obtained in an experiment to determine the relationship between the load and extension using a spiral spring.

Table 3

Load W (kg)	50.00	100.00	150.00	200.00	250.00
Extension (cm)	5.10	10.40	15.50	20.60	26.00

Using an appropriate scale, plot a suitable graph to estimate the value of the force constant. Also, obtain the slope of the graph.

- i) What is Hooke's law?
- b) What is the difference between standard error and limiting error?

20 marks

Question Four

(a) The relationship between 'U' and 'e' is of the form $U = ae^b$ (Assume all parameters are unitless)

The corresponding values of 'U' and 'e' obtained in an experiment were given in the table below:

Table 4

U	1.86	2.45	3.16	4.07	5.37	6.61	8.71
e	1.60	2.50	4.00	6.40	10.00	15.90	25.10

- (i) Linearize the expression $U = ae^b$
- (ii) Using the above linearization result, plot a suitable graph to determine the values of 'a 'b'.
- (b) Differentiate between relative error and zero error.

20 marks

