BOWEN UNIVERSITY, IWO. OSUN STATE. NIGERIA COLLEGE OF AGRICULTURE, ENGINEERING, AND SCIENCES

PHYSICS PROGRAMME

FIRST SEMESTER EXAMINATION 2022/2023 SESSION

PHY 361: MATHEMATICAL METHODS IN PHYSICS (2 CREDITS)

DATE: FRIDAY, 17TH FEBRUARY, 2023

TIME: 8.30 A.M - 10.30 A.M

INSTRUCTION: ATTEMPT ANY THREE QUESTIONS. (23 marks each) + (1 extra mark for consistency)

QUESTION 1

A hot water storage tank is a vertical cylinder surmounted by a hemispherical top of the same diameter. The tank is designed to hold 400 m³ of water. If the surface heat loss is to be a minimum, determine;

a. the total height 'H = h + r' of the tank
b. and the diameter 'r' of the tank
(8 marks)

c. Find the stationary points of the function; $u = x^2 + y^2$: subject to the constraint $\phi = x^2 + 2y^2 + 2x - 2y + 1$ (5 marks)

QUESTION 2

a. Using the Laplace transform method, solve the first order differential equation below

$$\frac{dx}{dt} - 2x = 4.$$
 Given that at 't' = 0, $x = 4$ (10 marks)

b. Find the Laplace transform of the following

(i) sin2t

(4 marks)

(ii) 4t

- (4 marks)
- c. Find the inverse (Laplace) transform of $\frac{9s-8}{s^2-2s}$
- (5 marks)

QUESTION 3

a. If the Gamma function $\Gamma(x)$, is defined by the integral;

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt.$$

Show, that $\Gamma(x + 1) = x \Gamma(x)$

(7 marks)

b. Evaluate the following:

(i) $\Gamma(7)$

(4 marks)

(ii) $\Gamma(5)$

(4 marks)

c. Solve: $\int_0^\infty x^7 e^{-x} dx$

(8 marks)

QUESTION 4

a. (i) Define the term 'rank of a matrix'

(3 marks)

(ii) When is a matrix said to have rank 'r'? (Where "r" could be 0,1,2....)

(3 marks)

- b. Determine the rank of matrices below:
 - (i) $\begin{bmatrix} 1 & 2 & 8 \\ 4 & 7 & 6 \\ 9 & 5 & 3 \end{bmatrix}$ (ii) $\begin{vmatrix} 3 & 4 & 5 \\ 1 & 2 & 3 \\ 4 & 5 & 6 \end{vmatrix}$

- (10 marks)
- c. (i) In matrix, when is an equation said to be consistent?
- (3 marks)
- (ii) Determine if this given equation below is consistent.
 - $\begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$

(4 marks)

