BOWEN UNIVERSITY, IWO. OSUN STATE, NIGERIA COLLEGE OF AGRICULTURE, ENGINEERING, AND SCIENCES

PHYSICS PROGRAMME

FIRST SEMESTER EXAMINATION 2022/2023 SESSION

PHY 291: PRACTICAL PHYSICS III (2CREDITS)

THURSDAY, 16TH FEBRUARY 2023 DATE:

TIME: 8:30-11.00AM (2HOURS 30MINS)

INSTRUCTION: ANSWER ANY TWO QUESTIONS.

QUESTION 1

You are supplied the following apparatus: spiral spring, retort stand, clamp, pointer, meter rule, hanger, slotted weights and stop watch.

1) Setup the apparatus given as shown above

2) Record the initial reading x_0 (the hanger inclusive)

3) Increase the load on the hanger by adding a slotted weight of m = 20g, record the mass and the corresponding positions of the pointer on the meter rule.

4) Repeat step (3) for other values of m = 40g, 60g, 80g, 100g, 120g, 140g and their corresponding values x_i of the pointer on the meter rule.

5) Progressively decrease the load in similar steps of m = 20g and record as in step (4).

6) Find the extension $e = x_i - x_0$ of the spring for both steps (4) and (5) i.e. the increasing and decreasing loads.

7) Tabulate your readings as below:

[10MARKS]

7) Tabulate yo	x_0 (cm)	x_i of increasing load x_{ii} (cm)	x_i of decreasing load $x_{id}(cm)$	Mean x_i $\frac{x_{ii} + x_{id}}{2} \text{(cm)}$	$e = x_i - x_0$ (cm)
20.00			1		
40.00					
60.00					
80.00		'			
100.00					
120.00					
140.00			•		

8) Plot a graph of e against m.

9) Calculate the slope and the intercept.

10) State two (2) precautions taken in performing this experiment.

[10MAR] [7MARKS] [3MARKS]

QUESTION 2

- a) Still considering the experiment in Question 1 above, starting from m = 60g, record the value of time t for 20 complete oscillations.
- b) Increase the loads in steps of 20g until 140g.

c) Tabulate your readings.

d) Plot a graph of T^2 against m.

.e) Calculate the slope and intercept on both axes.

f) State two (2) precautions taken in performing this experiment.

[8MARKS]

[10MARKS] [10MARKS]

[2MARKS]

QUESTION 3

The following results were obtained by displacing the free ends of a wooden meter rule with holes drilled at various intervals along its length. It was clamped to a retort stand, and a stop watch was used to calculate the time t for 20 complete oscillations. The center of gravity upon balancing it on a knife edge was found out to be $C.G=S_p=49.50\,cm$

Point of suspension $S_p(cm)$	Time t for 20 oscillations (s)	$h = S_g - S_p$ (cm)	$h^2 (cm^2)$	$T^2(s^2)$	$T^2h(\epsilon ms^2)$
			100	v .	
			Line age		and the second

Given that $T^2h = \frac{4\pi^2}{g} [h^2 + k^2]$

g and k are constants, where g is the acceleration due to gravity; k is the radius of gyration of the body about the C.G.

a) Complete the table above

[10MARKS]

b) Plot a suitable graph using the equation $T^2h = \frac{4\pi^2}{g}[h^2 + k^2]$

[13MARKS]

c) Hence, calculate the value of k^2

[5MARKS]

d) State two (2) precautions you took while performing this experiment.

[2MARKS]

