BOWEN UNIVERSITY, IWO, NIGERIA FACULTY OF SCIENCE AND SCIENCE EDUCATION DEPARTMENT OF MATHEMATICS AND STATISTICS

BSc. DEGREE 2014/2015 FIRST SEMESTER EXAMINATION

COURSE CODE: STA 312

COURSE TITLE: DESIGN AND ANALYSIS OF EXPERIMENTS I

DATE: 26/01/2015

TIME ALLOWED: $2\frac{1}{2}$ hours

CREDITS: 3

INSTRUCTION: Answer FOUR questions only

1(a) State the basic assumptions underlying the analysis of an experiment. What are the effects of departures from these assumptions .

(b) Consider the following:

Treatments				
1	2	3	4	5
83	84	86	89/	90
85	85	87	90	92
	85	87	90	
	86	87	91	
	86	88		
	87	88		
		88	~	
	1.3	88		3
		88		
		89		
		90	82	

- (i) Assuming a completely randomized design, carry out an ANOVA test and state your conclusions concerning the treatment effects.
- (ii) Compute the co-efficient of variation of your result and interprete it.
- 2(a) Give two examples each of complete block design and incomplete block design..
- (b) Four treatments A, B, C, D were involved in an experiment using blocks of size 3. The observation taken after the experiments are as follows:

Blocks	Treatments			
	Α	В	C	D
1	2	-	20	7
2	-	32	14	3
3	4	13	31	1
4	0	23	-	11

- (i) Is the design balanced?
- (ii) What is the value of λ , the number of times each pair of treatments appear together.
- (iii) Carry out the analysis of variance to test for treatments effects.

- 3(a) Construct orthogonalized squares for a 4×4 Latin squares with letters *PQRS* and respectively.
- (b) The following is an incomplete ANOVA table of a Latin square experiment involving 4 treatments.

Source	df	SS	MS
Row	-		163.17
Column	-	328.8	-
Treatment	-	-	1513.00
Error	-	_	-
Total	-	7444.00	

- (a) Complete the ANOVA table and test for differences between treatments.
- (b) Obtain the efficiency of the design relative to RCBD with rows as blocks.
- 4(a) What are the merits and demerits of factorial design.
- (b) A 2³ factorial experiment was run in three replicates and the resulting data are as shown below:

Treatment	Replicates		
Combination	1	2	3
(1)	22	31	25
n	32 35	43 34	29 50
р			
np	55	47	46
q	44	45	38
nq	40	37	36
pq	60	50	54
npq	39	41	47

Analyse the data and indicate the significant effects at $\alpha = 5\%$

5(a) Consider the following data:

Treatments				
1	2	3	4	5
7	12	14	19	7
7	17	18	25	10
15	12	18	22	11
11	18	19	19	15
9	18	19	23	11

Test for the significance of the following contrasts

 C_1 = Comparing treatments 5 with 4

 C_2 = Comparing treatments 1 and 3 with 4 and 5

 C_3 = Comparing treatments 1 with 3

- C_4 = Comparing treatments 2 with treatments 1, 3, 4 and 5.
- 6(a) Draw the layout of Randomized complete block design with letters A, B, C, D, E.
- (b) Design a 2⁵ factorial experiment in 2³ blocks by confounding ADE and BCE factorial effects with blocks in one run. Which other factorial effect is confounded in this design?
- (c) Explain "Principal" block with an Illustration.