BOWEN UNIVERSITY, IWO, OSUN STATE COLLEGE OF AGRICULTURE, ENGINEERING AND SCIENCE INDUSTRIAL CHEMISTRY PROGRAMME B.SC DEGREE 2019/2020 FIRST SEMESTER EXAMINATION

Course Code: CHM 103

Courses Title: General Chemistry Practical I Credit: 2

Date: 29/01/2020

Time Allowed: 1 hour

Instructions:

- (a) Answer all questions. Each question carries 1 mark.
- (b) Answer questions on the table provided at the back of this question paper.
- (c) Submit the answer page along with the question paper.

SURNAME:	Other names:
Matric No:	Programme:
College:	

1.	2.	3.	4.	5.
6.	7.	8.	9.	10.
11.	12.	13.	14.	15.
16.	17.	18.	19.	20.
21.	22.	23.	24.	25.
26.	27.	28.	29.	30.
31.	32.	33.	34.	35.
36.	37.	38.	39.	40.

1. All the following except one is a precaution while titrating in the laboratory:
(a) any of the titre values be used
(b) remove the funnel after pouring the acid into the burette
(c) never pour water into acid while diluting
(1) I was a very laboratory coat once you enter the laboratory
2. The trive of drawing the line of hest fit while drawing a graph after an experiment metades.
(a) to graphically express the results of one's experiment (b) to be able to effectively determine in
close of the graph (c) to include a maximum number of points (d) all of the above
3. Janet drew a straight line graph and picked points A (6, 6) and B (10, 8) to determine the slope.
The value of the slope will be (a) 1 (b) 2 (c) $\frac{1}{2}$ (d) $\frac{2}{3}$
4. The equation of a graph was given as $y = 1.8x - 0.5$. The slope and the intercept of the graph
respectively are (a) 1.8 & 0.5 (b) 0.5 & 1.8 (c) -0.5 & 1.8 (d) 1.8 & -0.5
5. A volumetric flask is used to measure which of the following? (a) Gases (b) Liquids
5. A volumetric flask is used to measure which of the following. (a) cases (c) = 4
(c) Solids (d) same as a weighing balance
6. The calibration of a pipette is carried out by which of the following methods?
(a) Gravimetric method (b) Titrimetric method (c) Centroid method
(d) Volumetric method
7. Bolanle was trying to calibrate a burette in the laboratory. Which of the following errors is she
likely to encounter? (a) Error due parallax (b) Gas leakage (c) Improperly cleaned
standard flask (d) None of the above
8. How close a measurement is to the true value is called (a) Estimate (b) Precision
(c) Significant (d) Accuracy
9. Which of the following formula is correct for calculating standard deviation for cases when $n \ge$
10?
$\sum (X-Xi)^2$
a) $\sqrt{\frac{2}{n}}$
a) $\sqrt{\frac{\sum (X - Xi)^2}{n}}$ b) $\sqrt{\frac{\sum (Xi - X)^2}{n-1}}$
b) $\int \frac{\sum (Xi - X)^2}{\sum (Xi - X)^2}$
$\sqrt{n-1}$
$\sum (Xi-X)^2$
c) $\sqrt{\frac{2}{n}}$
c) $\sqrt{\frac{\sum (Xi - X)^2}{n}}$ d) $\sqrt{\frac{\sum (Xi - X)}{n}}$
d) $\sum (Xi - X)$
\sqrt{n}
10. One of the following best describes random errors
(a) Random errors are due to steadiness of temperature or other natural conditions.
(b) Random errors arise from the inability of an individual to make observations.
(c) Random errors are erratic.
(d) Random errors are irregular and variable both in magnitude and sign
11. The reaction between CH ₃ COOH and KOH will produce a salt of CH ₃ COOK and is expected to
have a pH range of (a) 5-6 (b) 8-9 (c) 6-7 (d) 1-3
12. pH is the mathematical expression of (a) - log ₁₀ [H ⁺] (b) - log [H ⁺]
(c) $-\log_5[H^+]$ (d) $-\log_{10}[OH^-]$

13. The acid/base pair that will produce sodium nitrate is (a) HNO ₃ /NaOH
(b) HCl/NaNO ₃ (c) H ₂ CO ₃ /NaOH (d) no answer
14. The suitable indicator for a strong acid and a strong base titration is (a) methyl orange
(b) Phenolphthalein (c) None of the above (d) Options (a) or (b)
15. Ammonium chloride can be produced from the reaction of (a) HNO ₃ & NH ₃
(b) HCl & NH ₄ Cl (c) HCl & NH ₃ (d) NaCl & H ₂ O
16. The acid & base pair that give rise to the salt Na ₂ CO ₃ are (a) CH ₃ COOH & NaOH
(b) H ₂ CO ₃ & NaOH (c) CO ₂ & Na ₂ O (d) NaOH & H ₂ CO ₃
17. Equivalence point in titrimetric analysis is (a) the end point of a titration
(b) the point at which the amount of titrant added completely neutralyzes the analyte
(c) the point at which the indicator changes colour (d) all of the above
18. Neutralization can be defined as (a) the reaction of an acid and a base to form salt and water
only (b) the point at which a solution becomes neutral
(c) the reaction of water with another molecule to hydrolyze its atoms (d) none of the above
Use the following salts to answer questions 19 to 21: K2SO4, Na2CO3, NH4Cl and CH3COONa.
19. A dilute solution tested with a universal paper revealed it had a pH of 7-8. The dissolved salt is
likely to be (a) Na ₂ CO ₃ (b) K ₂ SO ₄ (c) NH ₄ Cl (d) CH ₃ COON ₂
20. Which of the dilute solution of the salt will have a pH of 1-2
(a) K ₂ SO ₄ (b) NaCO ₃ (c) NH ₄ Cl (d) None of the above
21. A dilute solution of pH 5-6 is likely to be a solution of which salt?
(a) K_2SO_4 (b) $NaCO_3$ (c) NH_4Cl (d) CH_3COONa
22. All the followings are glass wares except
(a) conical flask (b) pipette (c) spatula (d) burette
23. The carbonate ion is readily hydrolyzed by water to give an aqueous solution of
(a) CO ₂ (b) CO & H ⁺ (c) HCO ₃ & OH ⁻ (d) no answer
24. Ammonium ion is readily hydrolyzed by water to give an aqueous solution of
(a) NH ₃ & H ₃ O ⁺ (b) NH ₄ ⁺ , H ₂ O & NH ₄ OH (c) either option (a) or (b) (d) no answer
25. Ferric ion is readily hydrolyzed by water to give an aqueous solution of
(a) $[Fe(H_2O)_5(OH)]^{2+}$ (b) $Fe(OH)_3 \& H^+$ (c) either options (a) or (b) (d) no answer
26. The average titre value obtained from the titration of 0.1 M HCl against 20 cm ³ of NaOH
solution was 18.5 cm ³ . What is the molarity of the NaOH solution?
(b) 0.0103 M NaOH (b) 0.103 M NaOH (c) 0.0925 M NaOH (d) 0.975 M NaOH
27. Calculate the concentration (mol/dm³) of 3.2 g of NaOH dissolved in a 100 ml standard flask.
(a) 0.08 M (b) 0.008 M (c) 0.8 M (d) 8.0 M
28. Hydrolysis of a salt leads to:
(a) Decrease/Increase in Hydrogen ion concentration (b) Decrease/Increase in Hydroxyl ion
concentration (c) Options (a) and (b) (d) Neither (a) nor (b)

•	
State the pH of the following reactions at the equivalence point (questions 29-31)	
29. NaOH and CH ₃ COOH	
(a) $pH < 7$ (b) $pH > 7$ (c) $pH = 7$ (d) $pH = 0$	
30. HNO3 and NaOH	
(a) $pH > 7$ (b) $pH = 7$ (b) $pH = 0$ (d) $pH < 7$	
31. H ₂ SO ₄ and aqueous NH ₃	
(a) $pH = 7$ (b) $pH < 7$ (c) $pH > 7$ (d) $pH = 0$	
32. The first aid treatment for a spillage of dilute acid on a finger in the laboratory is	
(a) quickly dry the finger with a clean napkin and call the attention of the anyone aroun	d
(b) quickly run the tap water on the finger and call the attention of the technologist/lect	пег
(c) there is no need to not call the attention of any of the technologists on duty	
(d) quickly remove your laboratory coat and go to the hospital	
33. All the following are safety wears in the laboratory except	
(a) safety goggles (b) laboratory coat (c) hand gloves (d) all of the above	
34. An indicator is	
(a) a substance that undergoes a detectable colour change during titration thereby indicates	ting the
equivalence point	5.Te
(b) a weak organic acid or base which possesses different colours according to the hydr	ogen ion
concentration	ū
(c) a substance that ascertains during titration that the "neutral point" corresponds to a p	H of 7
(d) Options (a) and (b)	
(a) opinens (a) and (c)	
Suggest suitable choices of indicators for the titrations involving the following acid	s/bases in
questions 35 – 38.	
35. H ₂ SO ₄ / aqueous NH ₃	
(a) methyl orange (b) phenolphthalein (c) litmus red (d) no indica	tor
36. HCI/NaOH	
(a) phenolphthalein (b) congo red '(c) methyl orange (d) all of the above	
37. HCOOH/CH ₂ NH ₂	
(a) phenolphthalein (b) congo red (c) methyl orange (d) no suitable indic	ator
38. CH3COOH/KOH	
(a) phenolphthalein (b) congo red (c) methyl orange (d) litmus	
39. The pH of the titration of HCOOH/CH ₃ NH ₂ at the end point is	
(a) variable (b) 7 (c) >7 (d) <7	
40. Chemistry in the laboratory is	
(a) a practical test of theories (b) could be toxic thus safety rules must be obeye	d
(c) applicable to life (d) all of the above	A-1/2