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Abstract 

A 4-step block integrator using Hermite polynomial as basis function for the solution of general second-order initial 
value problems is developed through interpolation and collocation procedures. The consistency, stability and 
convergence characteristics of the proposed methods are examined. Some linear and nonlinear test problems in 
literature are used for the numerical experimentation and the results obtained show the superiority of the method 
in comparison with some existing methods. 
AMS Mathematics Subject Classification: 65L05, 65L06 
 
Keywords: Collocation, interpolation, basis polynomial, block method, second order initial value problems. 

DOI Number: 10.48047/NQ.2022.20.17.NQ880251  Neuroquantology 2022; 20(17):1976-1980 

 
1. Introduction 
Modelling of several physical phenomena gives 
rise to second order differential equations. 
Examples of such phenomena are molecular 
dynamics, the mass movement under the action 
of a force, control theory, circuit theory control 
and chemical kinetics (see Singh and Ramos 
[12]). Consider a second order initial value 
problem of the form: 
 
y′′ = f(x,y,y′), y(a) = α, y′(a) = β,       (1)  
 
where f is a continuous differentiable function. 
The traditional approach of solving (1) in the 
literature is to first reduce it to an equivalent 
system of two first order initial value problems 
after which various applicable methods for the 
solution of first order initial value problems are 
used to solve the system of initial value 
problems obtained (see Areo and Adeniyi [4] 
and Jator [8]). However, in order to avoid 
complications associated with computer 
programs in the traditional approach, reduce the 
computer time and computational work, several 
authors, including Adeniran and Longe [2], 
Singla et al. [13], Ramos et al. [10] and Udo et al. 
[14], have proposed various methods for solving  
 
 
 
 
 

(1) directly without having to reduce it to a 
system of equations. 
 
Block methods were formulated to overcome 
the demerits associated with predictor-corrector 

methods. Advantages of block methods include 
the fact that they are self-starting, efficient in 
terms of accuracy and pieces of solutions are not 
overlapped (see Ramos et al. [11]). This paper is 
concerned with the development of a block 
method through interpolation and collocation 
procedure for solving second-order ordinary 
differential equations using Hermite polynomial 
as basis functions. 
 
The arrangement of this paper is as follows: In 
section 2, we develop a 4-step block method for 
solving (1) using Hermite polynomial as a basis 
function. Convergence analysis of the proposed 
method is established in section 3. In section 4, 
some test problems are solved to demonstrate 
the performance and reliability of the new 
method, and in the last section some conclusions 
are given. 
 
2. Formulation of the Method 
In order to solve the initial value problem (1) in 
   

*Corresponding Author: O. M. Ogunlaran 
Address:1*,2Mathematics Programme, College of Agriculture, Engineering and Science, Bowen University, Iwo, Nigeria  
Email: matthew.ogunlaran@bowen.edu.ng  
Relevant conflicts of interest/financial disclosures: The authors declare that the research was conducted in the absence of 
any commercial or financial relationships that could be construed as a potential conflict of interest. 

 
 

  
  
  

mailto:matthew.ogunlaran@bowen.edu.ng


Neuroquantology | November 2022 | Volume 20 | Issue 17 | Page 1976-1980 | Doi: 10.48047/NQ.2022.20.17.NQ880251 
O. M. Ogunlaran, M. A. Kehinde, A New Block Integrator for Second Order Initial Value Problems 

 

 eISSN: 1303-5150 
    

  www.neuroquantology.com 
  

1977 

the interval [a,b] based on the partition a = x0 ≤ 
x1 ≤···xn = b with a uniform step length of h = xn − 
xn−1, n = 0,1,··· ,N − 1, we consider an approximate 
solution Y(x) to the analytical solution y(x) of the 
form: 
 

                            (2) 

 
where Hr(x) is the Probabilist’s Hermite 
polynomial function of degree r defined as 
follows: 
  

.                (3) 

 
The Hermite polynomial (3) satisfies the 
recurrence relation: 
 

1;           (4) 

 
with the initial conditions: H0(x) = 1 and  
H1(x) = x. 
To determine the values of the coefficients ar,  
r = 0(1)6, in equation (2), set 
 

,            (5) 

 
and 
 

,            (6) 

 
where n is the grid index and yn+i = Y(xn+i). 
 
Equations (5) and (6) provide a system of seven 
equations whose solution gives the values of the 
coefficients ar, r = 0(1)6, which are substituted 
into (2) and after some algebraic manipulations 
yields a continuous scheme of the form: 

,           (7) 

 
where αi(x), βi(x), i = 0(1)4 are continuous 
coefficients. 
Evaluating (7) at x = xn, xn+2, xn+4 to obtain: 
 

 (8) 
 

  (9) 
 

      (10) 
 
Now, differentiating (7) with respect to x to get 

,          (11) 

 
Evaluating equation (11) at x = xn, xn+1, xn+2, xn+3, 
xn+4 to get the complementary methods as 
follows: 

 (12) 
 

(13) 
 

(14) 
 

  (15) 
 

(16) 
The system of equations (8) –(10), (12)– (16) 
constitutes the new block method. 
 
3. Analysis of the Method 
Basic properties of the new block method are 
investigated to establish the efficiency and 
reliability of the method. The properties 
examined are: Order, error constant, 
consistence and zero stability. Now, the system 
of equations (8) –(10), (12)– (16) may be 
rewritten in matrix form as follows: 
 
AYm = BYm−1 + h2[CFm−1 + DFm],                         (17) 
 
where 

, 
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(where = 1(1)4 are introduced to 

augment the zero entries of the vector 
notations) 
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3.1 Local Truncation Error 
According to Jator [8] and Lambert [9], the local 
truncation error associated with the second 
order linear multistep method: 
 

                                                (18) 
 
is defined by the difference operator 
 

                    (19) 
 
where y(x) is an arbitrary function, continuously 
differentiable on [a,b]. 
Expanding (19) in Taylor series about point x 
leads to the expression: 
 

(20) 
 
where C0,C1,C2,··· ,Cp,··· ,Cp+1 are obtained as 
follows: 

, 

.       (21) 

 
Method (18) is said to be of order p if C0 = C1 = C2 

= ··· = Cp = Cp+1=0 and Cp+2 ≠ 0. The constant Cp+2 ≠ 

0 is called the error constant and Cp+2hp+2y(p+2)(x) 
is the principal local truncation error at xn. 
 
Following from the definition above, the block 
method (17) is of order p = (5,5,5,5,5,5,5,5) with 
error constant 
 

. 

 
3.2 Consistency 
Following Jator [8], the block method (17) is 
consistent since the condition p ≥ 1 is satisfied. 
 
3.3 Zero Stability 
The normalization of the system (17) is given by 
 

              (22) 
 
and as h → 0, (22) tends to the difference system 
 

                                               (23) 
  
where A∗ is an identity matrix of order 8 and 
 

 
The first characteristic polynomial of (23) is 
given by 
 

.      (24) 

 
Therefore, the block method (17) is zero-stable 
since according to Fatula [6] a block method is 
zero-stable if ρ(r) = 0 satisfies |ri|≤ 1 and the 
multiplicity of the roots with |ri| = 1 does not 
exceed 2. 
 
3.4 Convergence 
By Dahlquist [5], the necessary and sufficient 
conditions for a linear multistep method to be 
convergent is to be consistent and zero stable. 
Therefore, the proposed block method 
converges. 
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4. Numerical Examples 
To demonstrate the efficiency of the method, we 
apply the proposed method to solve the 
following linear and nonlinear test problems 
from literature: 
 
Example 1 
Consider the following linear initial value 
problem: 
 
y′′ − 100y = 0; y(0) = 1, y′(0) = −10, h = 0.01. 
 
Analytical solution: y(x) = e−10x 
 
Source: Adee et al. [1] and Areo and Adeniyi [4]. 
 
Example 2 
Solve the initial value problem: 
 
y′′ + y = 0; y(0) = 1, y′(0) = 1, h = 0.1 
 
Analytical solution: y(x) = cos x + sin x. 
 
Source: Adee et al. [1] and Areo and Adeniyi [4]. 
 
Example 3 
Solve the initial value problem: 
y′′ − y′ = 0; y(0) = 0, y′(0) = −1,h = 0.1. 
 
Analytical solution: y(x) = 1 − ex. 
 
Source: Yahaya and Badmus [15]. 
 
Example 4 
Solve: 
 
y′′ + (y′)2 + y2 = 1 – sin x; h = 0.1, 0 ≤ x ≤ 1. 
 
subject to the initial conditions: y(0) = 0,y′(0) = 1. 
 
Analytical solution: y(x) = sin x. 
Source: Guler et al. [7]. 
 
Example 5 
Solve the nonlinear initial value problem: 
 

 
 
Analytical solution: . 

 
Source: Adesanya et al. [3] 
 
 

Table 1: Absolute Errors for Example 1 

 
 

5. Conclusion 
In this paper, we have constructed a direct 4–
step block integrator which is suitable and 
efficient for solving second order initial value 
problems in ordinary differential equations. The 
analysis of the properties of the proposed 
method show that the method is zero stable, 
consistent and convergent. The method is 
applied on some linear and nonlinear test 
problems with favourable solutions obtained. 
 
Table 2: Absolute Errors for Example 2 

 
 
Table 3: Absolute Errors for Example 3 

 
 
Table 4: Absolute Errors for Example 4 

x New Method Guler et al. [7] (N=5) 
0.1 9.30E-10 3.49E-08 
0.2 1.99E-09 1.16E-07 
0.4 3.18E-09 1.13E-07 
0.5 3.23E-09 4.61E-07 
0.6 3.51E-09 7.80E-07 
0.7 3.74E-09 1.40E-06 
0.8 3.53E-09 4.16E-06 
0.9 3.03E-09 1.40E-05 
1.0 2.75E-09 4.10E-05 
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Table 5: Absolute Errors for Example 5 
x New Method Adesanya et al. [3] 

1.0025 3.16E-17 4.56E-07 
1.0050 7.55E-17 1.94E-06 
1.0075 1.19E-16 8.40E-06 
1.0100 1.51E-16 2.81E-05 
1.0125 1.81E-16 6.14E-05 
1.0150 2.22E-16 9.47E-05 
1.0175 2.63E-16 1.68E-04 
1.0200 2.93E-16 2.37E-04 
1.0225 3.21E-16 3.07E-04 
1.0250 3.59E-16 4.15E-04 
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