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ABSTRACT 

In this paper, we formulate a method using Chebyshev polynomials for solving both linear and non-linear multi-point 

boundary value problems. Quasi linearization technique is used to transform a non-linear boundary value problem into a 

sequence of linear boundary value problems with a quadratic polynomial which satisfies the boundary conditions chosen 

as the initial approximation. Four numerical examples are given to demonstrate the efficiency of the present method and 

the results obtained are compared with other methods in the literatures. 

Keywords- Linear and non-linear problems; Multi-point boundary value problem; Chebyshev polynomials; Quasi 

linearization technique 

1. INTRODUCTION 

In recent years, multi-point boundary value problems have received a considerable growing research interest. Multi-point 

boundary value problems appear in various areas of sciences and engineering. Modelling and analysing problems arising 

from electric power networks, railway systems, telecommunication lines, construction of  large bridges with many 

supports and analysing kinetic reaction problems  are some examples of physical phenomena that lead to multi-point 

boundary value problems[8, 21]. Many problems in theory of elastic stability can be set up as multi-point boundary value 

problems [9]. Several numerical methods have been developed for solving multi-point boundary value problems. Some 

of these are Reproducing kernel method [1,2,5,6,10,11,13], Adomain decomposition method[12], The shooting 

method[14,15], Weighted residual method[22], Padé approximations[18] and Homotopy perturbation method[23]. 

Researchers have proposed several methods for handling third-order boundary value problems. For instance, 

see[4,12,16,17,18] and references therein. However in this paper, we present an approximate method based on 

Chebyshev polynomials approach for the solution of third-order multi-point boundary value problems of the form 

0 1 2 3   ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )                                                (1.1)a x y x a x y x a x y x a x y x f x       

subject to the boundary conditions 

1

2

     (0)                                                                                                                         (1.2)

     (0)                                                   

y

y







                                                                       (1.3)

     (1) ( )                                                                                                            y y     (1.4)

 

where 0 1 2 3( ),  ( ),  ( ),  ( )  ( )a x a x a x a x and f x are continuous functions and 1 2,  ,  ,      are constants and 

(0,1).      

This paper is organised as follows: In the next section, we define Chebyshev and shifted Chebyshev polynomials of the 

first and second kinds, establish some relationship between the polynomials of the first and second kinds, describe the 

derivatives of the shifted Chebyshev polynomials and some of its properties. Section 3 summarizes the application of the 

proposed method to the solution of problem (1.1) – (1.4). Four numerical examples are given in section 4 to demonstrate 

the applicability and validity of the method. Finally, the concluding remarks are given in section 5.   

2. FORMULATION OF THE METHOD 

2.1. Definitions of Chebyshev Polynomials 

Definition 2.1: The Chebyshev polynomial ( )nT x
 
 of the first kind is a polynomial of degree n in x  defined by 

      ( ) cos ,  where cos  ,   [-1,1]                                                                  (2.1)nT x n x x     

which satisfies the recurrence relation  
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1 -2      ( ) 2 ( ) - ( ),  2                                                                                    (2.2)   n n nT x xT x T x n 
 

with the initial conditions   

0 1      ( ) 1,     ( )                                                                                                     (2.3)T x T x x   

Definition 2.2: The shifted Chebyshev polynomial 
*( )nT x  of the first kind on [0,1] is a polynomial of degree n

 
in x   

defined by  

*      ( ) (2 1)                                                                                                           (2.4)n nT x T x   

Similarly, 
*( )nT x

 
satisfies the recurrence relation 

* * *

1 2      ( ) 2(2 1) ( ) - ( ),  2                                                                          (2.5)   n n nT x x T x T x n   
 

with the initial conditions 

* *

0 1      ( ) 1,     ( ) 2 1                                                                                            (2.6)T x T x x    

Definition 2.3: The Chebyshev polynomial ( )nU x
 
of the second kind is a polynomial of degree n in x  defined by 

sin( 1)
      ( ) ,  where cos  ,   [-1,1]                                                         (2.7)

sin
n

n
U x x x







    

The Chebyshev polynomials of the second kind are defined by the recurrence relation  

1 -2      ( ) 2 ( ) - ( ),  2                                                                               (2.8)   n n nU x xU x U x n 
 

with the initial conditions   

0 1      ( ) 1,     ( ) 2                                                                                                (2.9)U x U x x   

Definition 2.4: The shifted Chebyshev polynomial 
*( )nU x

 
of the second kind on [0,1] is a polynomial of degree n in x  

defined by 

*      ( ) (2 1)                                                                                                      (2.10)n nU x U x   

The shifted Chebyshev polynomials of the second kind are defined by recursively by  

* * *

1 2      ( ) 2(2 1) ( ) - ( ),  2                                                                     (2.11)n n nU x x U x U x n   
 

with the initial conditions   

* *

0 1      ( ) 1,     ( ) 2(2 1)                                                                                     (2.12)U x U x x    

2.2 Relation between Chebyshev polynomials of the first and second kinds 

The following theorems show relationships between the shifted Chebyshev polynomial of the first and second kinds. 

Theorem 2.1 

* *

* *

-1 n

Let ( ) and ( ) denote the shifted Chebyshev polynomials of degree  in  on [0,1] of the 

1
first and second kinds respectively. Then for 1,  2 ( ) ( ) , where c is an 

arbitrary cons

n n

n

T x U x n x

n U x dx T x c
n

  
tant.

  

Proof 

The Chebyshev polynomial of the second kind of degree 1n is defined by 

1

sin
    ( ) ,  where cos  ,   [-1,1]                                                              (2.13)

sin
n

n
U x x x





     



International Journal of Mathematical Sciences, ISSN: 2051-5995, Vol.34, Issue.2        1573 

 

© RECENT SCIENCE PUBLICATIONS ARCHIVES |July 2014|$25.00 | 27703439| 

*This article is authorized for use only by Recent Science Journal Authors, Subscribers and Partnering Institutions* 

Integrating both sides of (2.13), we obtain 

1

cos
     ( )  n

n
U x dx c

n


    

Thus, 

1

1
     ( ) ( )                                                                                               (2.14)n nU x dx T x c

n
    

We now use the transformation 2 1x t   to map [-1,1] to [0,1],x t   then (2.14) becomes 

   1

1
     2 (2 1) (2 1)n nU t dt T t c

n
      

And since t
 
is a dummy variable, we obtain 

1

* *1
     2 ( ) ( )                                                                                               (2.15)

n n
U x dx T x c

n
 

Theorem 2.2 

* *

* * *

1 1 3

Let ( ) and ( ) denote the shifted Chebyshev polynomials of degree  in  on [0,1] of the 

first and second kinds respectively. Then ( ) 2 ( ) ( ),  3,

n n

n n n

T x U x n x

U x T x U x n    
 

Proof 

From the trigonometry identity 

      sin( 1) -sin( -1) 2cos sinn n n n      

Dividing both sides by sin , we obtain  

2      ( ) 2 ( ) ( )n n nU x T x U x   

Replacing n  with 1,n   we have 

1 1 3      ( ) 2 ( ) ( ),  3                                                                                (2.16)n n nU x T x U x n      

Now for [0,1],x (2.16) becomes  

1 1 3      (2 1) 2 (2 1) (2 1),  3 n n nU x T x U x n         

Hence, 

* * *

1 1 3      ( ) 2 ( ) ( ),  3                                                                                 (2.17)n n nU x T x U x n    
 

Theorem 2.3 

1
* ' *

1

0
( ) odd           

* *

 For 1,  ( ) 2 ( ) ,

where ( ) and ( ) denote the shifted Chebyshev polynomials of degrees  and  in  on [0,1]

of the first and second kinds respectively.

n

n r

r
n r

r n

n U x T x

T x U x r n x








  

 

Proof 

It follows from (2.17) that 
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* * *

3 3 5

* * *

5 5 7

* * *

3 3 1

* * *

2 2 0

( ) 2 ( ) ( )

( ) 2 ( ) ( )

       
                                                                

( ) 2 ( ) 2 ( ) for 4

  or

( ) 2 ( ) ( ) for 3

n n n

n n n

U x T x U x

U x T x U x

U x T x T x n

U x T x T x n

  

  

 


  




   


   

                   (2.18) 
 

Suppose n is odd in (2.17), substituting (2.18) appropriately into (2.17) gives 

 * * * * * *1
21 1 3 5 2 0   ( ) 2 ( ) ( ) ( ) ( ) ( )                                               (2.19)n n n nU x T x T x T x T x T x       

 

Hence,
 

1
* *

1

0

   ( ) 2 ' ( ),                                                                                                          (2.20)

 where  is even and a summation symbol with prime denotes a 

n

n r

r

U x T x

r







 

sum with first term halved.

Similarly suppose n is even, we obtain 

1
* *

1

1

      ( ) 2 ( ),                                                                                                          (2.21)

 where  is odd.

n

n r

r

U x T x

r







 

 

Now equations  (2.20) and (2.21) can be written as a single equation as 

1
* ' *

1

0
( ) odd           

      ( ) 2 ( )                                                                                                      (2.22)   
n

n r

r
n r

U x T x







 
 

2.4 Derivatives of Chebyshev Polynomials 

Derivatives of the shifted Chebyshev polynomials 
*( )nT x  of the first kind in the range [0,1] are obtained as follows: 

Differentiating both sides of (2.15) with respect to ,x we get 

* *

1      ( ) 2 ( )                                                                                                   (2.23)n n

d
T x nU x

dx


 

Substituting equations (2.22) into (2.23), we get 

1
* ' *

0
( ) odd           

      ( ) 4 ( )                                                                                              (2.24)
n

n r

r
n r

d
T x n T x

dx






 

Differentiating both sides of (2.24) with respect to x, we obtain after some algebraic manipulations, 

2 2
* ' 2 2 *

2
0

( ) even                                                

      ( ) 4 ( ) ( )                                                                         (2.25)   
n

n r

r
n r

d
T x n n r T x

dx






 
 

Likewise for the third derivative, we have 

3 3 2
* ' 2 2 *

3
0 1

( ) even                                                   

      ( ) 16 ( ) ( )                                                              (2.26) 
n n

n l

l r l
n r

d
T x nr n r T x

dx

 

  


  
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2.3 Some Properties of Chebyshev Polynomials 

Theorem 2.4 

*( )nT x
 

of degree 1n  assumes its 1n extrema in [0,1] at   1
1 cos

2

j

j n
x


  with 

( ) ( 1) ,  for each 0,1,  ...., .j

n jT x j n            

Proof 

We use a property of cos( )x  to determine the extrema of the shifted Chebyshev polynomial. Recall that the extrema 

occur when cos( ) 1    which is a multiple of .  If we then set 

  

 

1

1

cos (2 1) . This implies that

1
       1 cos , 0,1,  ....,                                                                                (2.27)

2

  Also,

        cos cos (2 1) cos ( 1)

Th

j

j

j n

j

j

n x j

x j n

n x j











 

  

   

*

us,

      ( ) ( 1) ,   0,1,  ....,                                                                                         (2.28)j

n jT x j n  

         

From (2.28) we obtain for  and 0,  respectivelyj n j     

*

*

            (0) ( 1) ,  1                                                                                               (2.29)

and

            (1) 1,  1                                          

n

n

n

T n

T n

  

                                                               (2.30)

 

Evaluating (2.24) at the two endpoints, we obtain the following important results: 

* 1 2

0

* 2

1

      ( ) | ( 1) 2 ,  0                                                                                   (2.12)   

      ( ) | 2 , 0                                            

n

n x

n x

d
T x n n

dx

d
T x n n

dx







  

                                                     (2.13)   

 

3. IMPLEMENTATION OF THE METHOD 

In order to solve equation (1.1) with the boundary conditions (1.2) - (1.4), we approximate ( )y x   using the finite sum 

' *

0

                       ( ) ( )                                                                                        (3.1)
n

n k k

k

y x c T x


  

where kc  are constants to be determined. 

Substituting (3.1) and its derivatives into (1.1), we obtain 

3 2 2
' 2 2 * ' 2 2 *

0 1

3 0 1 2 0
( ) ( ) 

1
' * ' *

2 3

1 0 0
( ) 

     16 ( ) ( ) ( ) 4 ( ) ( ) ( )

               +4 ( ) ( ) ( ) ( ) ( )               

n k k n k

k l k r

k l r l k r
k r even k r even

n k n

k r k r

k r k
k r odd

a x kr k r c T x a x k k r c T x

a x kc T x a x c T x f x

  

     
 



  


  

 

    

                                 (3.2) 

  

We have to select 2n points in the range of integration such that ( )ny x  satisfies the differential equation (1.1) at 

these 2n collocation points and the boundary conditions (1.2) – (1.4). 
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Setting   jx x in (3.2), we obtain  

3 2 2
' 2 2 * ' 2 2 *

0 1

3 0 1 2 0
( ) ( ) 

1
' * ' *

2 3

1 0 0
( ) 

   16 ( ) ( ) ( ) 4 ( ) ( ) ( )

               +4 ( ) ( ) ( ) ( ) ( ),       

n k k n k

j k l j j k r j

k l r l k r
k r even k r even

n k n

j k r j j k r j j

k r k
k r odd

a x kr k r rc T x a x k k r c T x

a x kc T x a x c T x f x

  

     
 



  


  

 

    

                                 (3.3) 

 

where jx  are firstly chosen as the evenly spaced points  

1
              ,  1,2,  , . . ., - 2.                                                                      (3.4)    

j

j n
x j n


 

 
Secondly, to achieve higher accuracy we use unevenly distributed nodes. In this case, the collocation points are chosen to 

be the internal extrema 

  1

1
       1 cos , 1,2,...., - 2                                                                             (3.5)

2

j

j n
x j n




    

of  the ( 1)n th order shifted Chebyshev polynomial 
*

1( ).nT x  

Now, the boundary conditions (1.2) – (1.4) yield respectively 

'

1

0

    ( 1)                                                                                                                (3.6)
n

k

k

k

c 


   

1 2

2

0

    ( 1) 2                                                                                                        (3.7)
n

k

k

k

k c 



   

1
2 *

0 1 0
( ) 

    2 4 ' ( )                                                                               (3.8)
n n k

k k r

k k r
k r odd

k c kc T  


  


     

Therefore, the 2n equations obtained in (3.3) plus the 3 boundary conditions (3.6) - (3.8) give the system of (n+1) 

equations which is solved for the unknown coefficients ,  0,1,...,kc k n  in (3.1).   

4. NUMERICAL EXAMPLES 

In this section, two linear and two non-linear examples are examined to test the efficiency of the proposed method. The 

results obtained show that the method with nonuniformly- distributed nodes gives a better result. All computations are 

carried out with matlab 2010a.  

Problem 4.1  

Consider the following linear third-order boundary value problem[19, 1, 3, 7] 

3 2   - ( -2 -5 -3)                                                                                              (4.1)xy xy x x x e   

Subject to the boundary conditions 

   (0) 0,  (0) 1,  (1) -                                                                                             (4.2)y y y e     

The exact solution is ( ) (1 ) .xy x x x e  We report absolute errors of our method for n=8 and n=10 with the two sets of 

grid points together with the results obtained in [1] at some selected points.    

  Problem 4.2 

Consider the following variable coefficient non-homogeneous linear third-order boundary value problem [1] 

2   ( ) ( ) 6 3 -6   0 1                                                                         (4.3)y x xy x x x x        

Subject to the boundary conditions 
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31
2 4

   (0) 0,  (0) 1,  (1) ( ) -                                                                                  (4.4)y y y y      

The exact solution is
2 33

2
( ) .y x x x 

 
The numerical results by our method for n=3 with either way of choosing the 

grid points (i.e. equation (3.4) or (3.5)) are presented in Table 2. We compare the absolute errors of the proposed method 

with the method of Akram et al[1].       

Problem 4.3 

Consider the following non-linear third-order boundary value problem[1, 4] 

3 3   ( ) 2 4(1 )                                                                                                   (4.5)yy x e x      

Subject to the boundary conditions 

1
2

   (0) 0,  (0) 1,  (1)                                                                                               (4.6)y y y     

The exact solution is ( ) ln(1 ).y x x   The nonlinear boundary value problem (4.5)-(4.6) is linearized by the 

quasilinearization technique [20] to obtain         

3 3 3 3

1 1   6 6 2 4(1 ) , 0,1,...                                               (4.7)k k ky y yiii

k k ky e y e y e x k   

       

1
1 1 1 2

subject to   (0) 0,  (0) 1,   (1)                                                                      (4.8)i i

k k ky y y    
 

Using the initial approximation
21

0 4
( )y x x x  , the numerical results for this problem at third iteration (i.e. k=2) at 

some selected points are presented in Table 3 for both n=8 and n=10, and in comparison with the results obtained in 

Khan and Aziz[4] and Akram et al[1]. 

Problem 4.4 

Consider the following non-homogenous non-linear third-order boundary value problem 

 
2 2   ( ) ( ) sin -cos    0 1                                                                        (4.9)y x y x x x x      

Subject to the boundary conditions 

1 1
2 2

   (0) 0,  (0) 1,  (1) ( ) cos(1) cos( )                                                             (4.10)y y y y      
 

The exact solution is ( ) sin .y x x Linearizing the nonlinear boundary value problem (4.9)-(4.10) by the 

quasilinearization technique [20], we obtain         

 
2

2

1 1   2 sin -cos , 0,1,...                                                                (4.11)iii ii ii ii

k k k ky y y y x x k    
 

1 1
2 21 1 1 1subject to   (0) 0,  (0) 1,   (1) ( ) cos(1) cos( )                                (4.12)i i i

k k k ky y y y       
 

With the initial approximation    21
20( ) cos(1) cos ,y x x x    the numerical results for this problem at fourth 

iteration (i.e. k=3) at some selected points are presented in Table 4 for both n=8 and n=10. 

Table 1: Comparison of Absolute Errors in numerical results for Example 4.1 

 

X 

 

Akram et 

al[1] (n=20) 

 

Akram et 

al[1] (n=80) 

Present method (n=8) Present method (n=10) 

Evenly-spaced 

nodes 

Unevenly-

spaced nodes  

Evenly-spaced 

nodes 

Unevenly-spaced 

nodes 

0 0 0 2.8834E-018           5.8188E-018                    2.2028E-018       1.5256E-017                     

0.1 8.29E-07 9.68E-10 9.9859E-008 5.8083E-009 2.5387E-010 7.0433E-012 

0.2 - - 2.3056E-007 1.4700E-008 5.5718E-010 3.9180E-013 

0.3 1.63E-07 8.67E-09 3.5655E-007 3.1422E-009 8.6025E-010 3.2954E-012 

0.4 4.88E-07 8.85E-09 4.8630E-007 2.3245E-009 1.1654E-009       2.1119E-011 

0.5 4.62E-07 2.52E-09 6.1654E-007 1.5719E-008 1.4726E-009 1.1491E-011 

0.6 - - 7.4853E-007         3.3380E-008 1.7826E-009 2.2323E-012 

0.7 8.12E-07 3.57E-09 8.8360E-007 2.6617E-008 2.0963E-009 2.1067E-011 

0.8 - - 1.0187E-006 1.4216E-008 2.4146E-009     2.4483E-011 

0.9 6.60E-07 7.56E-09 1.1639E-006 2.4924E-008 2.7417E-009 1.6431E-011 

1.0 0 0 1.2782E-006 3.1640E-008 3.0230E-009 2.4399E-011 
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Table 2: Comparison of numerical results for Example 4.2 

X Exact solution Approximate solution 

Present method (n=3) 

Absolute errors  

Present method (n=3) 

Absolute errors Akram 

et al[1] (n=100) 

0 0             0        0.00000 0.000000 

0.1 1.4000E-002 1.4000E-002 0.00000 5.17E-09 

0.2 5.2000E-002 5.2000E-002 0.00000 4.13E-08 

0.3 1.0800E-001 1.0800E-001 0.00000 1.39E-07 

0.4 1.7600E-001 1.7600E-001 0.00000 3.32E-07 

0.5 2.5000E-001 2.5000E-001 0.00000 6.53E-07 

0.6 3.2400E-001 3.2400E-001 0.00000 1.13E-06 

0.7 3.9200E-001 3.9200E-001 0.00000 1.81E-06 

0.8 4.4800E-001 4.4800E-001 0.00000 2.73E-06 

0.9 4.8600E-001 4.8600E-001 0.00000 3.94E-06 

1.0 5.0000E-001 5.0000E-001 0.00000 5.48E-06 

 

Table 3: Comparison of absolute errors in numerical results for Example 4.3 at third iteration 

 

X 

 

Khan and 

Aziz[4] 

 

Akram et al[1] 

(n=50) 

Present method (n=8) Present method (n=10) 

Evenly spaced 

nodes 

Unevenly-

spaced nodes 

Evenly spaced 

nodes 

Unevenly-spaced 

nodes 

0 0.000000 0.000000 4.3082E-017                   1.6698E-017                     2.0254E-018                     7.7285E-017                     

0.1 0.0000056 3.22E-07 1.6609E-006 1.0557E-007 1.1231E-007 3.7293E-009 

0.2 0.0000095 4.75E07 3.6772E-006 2.9542E-007 2.3653E-007 8.1814E-010 

0.3 0.0000032 1.94E-07 5.4362E-006 1.5235E-007 3.4931E-007 1.5976E-009 

0.4 0.0000175 6.28E-07 7.0699E-006 5.3985E-008 4.5258E-007 8.4219E-009 

0.5 0.0000292 8.11E-07 8.5540E-006 2.4358E-007 5.4715E-007 6.0106E-009 

0.6 0.0000288 4.38E-07 9.9124E-006 4.5082E-007 6.3404E-007 2.8895E-009 

0.7 0.0000132 3.86E-07 1.1171E-005 4.1400E-007 7.1420E-007 7.7568E-009 

0.8 0.0000051 7.77E-07 1.2312E-005 3.0403E-007 7.8849E-007 9.0095E-009 

0.9 0 2.35E-07 1.3419E-005 3.7922E-007 8.5814E-007 7.0981E-009 

1.0 0 0 1.4227E-005 4.3069E-007 9.1360E-007 8.7851E-009 

Table 4: Comparison of absolute errors in numerical results for Example 4.4 at fourth iteration 

 

X 

Present method (n=8) Present method (n=10) 

Evenly-spaced 

nodes 

Unevenly-spaced 

nodes 

Evenly -spaced 

Nodes 

Unevenly-spaced 

nodes 

0 3.8937E-018   2.2549E-017    2.1090E-018       1.9638E-017  

0.1 8.8540E-010 5.9524E-011 1.4332E-012 3.2474E-014 

0.2 2.1237E-009 1.6797E-010 3.2857E-012 2.3759E-014 

0.3 3.4167E-009 1.2344E-010 5.2944E-012 3.5638E-014 

0.4 4.8387E-009 1.3939E-010 7.4797E-012 2.0095E-014 

0.5 6.3711E-009 3.6888E-010 9.8521E-012 7.4940E-014 

0.6 8.0310E-009 6.4213E-010 1.2429E-011 1.9429E-013 

0.7 9.8410E-009 7.7079E-010 1.5233E-011 1.9218E-013 

0.8 1.1793E-008 8.7081E-010 1.8293E-011 2.6756E-013 

0.9 1.3972E-008 1.1518E-009 2.1654E-011 4.2333E-013 

1.0 1.6161E-008 1.4655E-009 2.5138E-011 5.3380E-013 
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5. CONCLUSION 

In this paper, we have studied a method based on Chebyshev polynomials of the first kind for solving both linear and 

non-linear third-order multi-point boundary value problems. Besides the advantage of high accurate results, the proposed 

method solves the boundary value problem without converting it to a system of first-order differential equations thereby 

reducing the computational cost. 
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