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Abstract  A polynomial spline of degree n is made up of polynomial segments of degree n that are connected in a way  that 
guarantees the continuity of the function and of its derivatives up to order n-1. This paper presents a numerical method based 
on cubic spline function with a free boundary condition for the solution of first order integro-differential equations. The 
solution procedure of this technique is simple and straightforward. Several test examples are considered to demonstrate the 
applicability and performance of the method. The results obtained by the proposed method are compared with  the exact 
solutions and some existing results in literatures.  
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1. Introduction 
Various physical problems  in  sciences and engineering are 

modelled by integro-differential equations[16]. Integro- 
differential equations are usually difficult to solve 
analytically so there is a need to obtain an efficient 
approximate solution[6, 12]. Several methods have been 
proposed for solving these equations but most of them have 
their limitations such as unrealistic assumptions, 
linearization, low convergence and divergent results. Among 
these methods are Wavelet-Galerkin method[2], Chebyshev 
wavelets method[3], Adomain  decomposition method[7], 
CAS wavelets method[9], Sine-Cosine wavelets[24], 
Homotopy perturbation method[25], Differential transform 
method(DTM)[6] and New Homotopy Analysis method 
(NHAM)[23]. 

Spline functions play a significant role in both the analysis 
and solution of a variety of problems in applied mathematics 
and engineering. Classes of spline functions possess many 
nice structural properties and excellent approximation 
powers. The rapid development of spline functions is due 
primarily to their great usefulness in applications[19]. Spline  
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methods have been used to solve various forms of ordinary 
differential equations[4, 8, 11, 14, 26, 20 - 22], part ial 
differential equations[5, 10] and Integral equations[13, 15, 
17 - 18]. All these successful applications affirmed the 
validity and effect iveness of spline methods. 

In this paper is presented a cubic spline method for solving 
first order Fredholm integro-differential equations of the 
form: 

( ) ( ) ( ) ( , ) ( ) ( ) 
b

a
y x f x y x k x s y s ds g xλ′ + + =∫    (1) 

0 ( )y a y=                   (2) 

where the functions ( ),  ( ) and ( , ) aref x g x k x s  
sufficiently smooth real  valued functions. 

2. Description of the Method 
To develop the spline approximat ion method for solving 

the integro-differential equation (1) - (2), the interval[a,b,] is 
divided into n equal subintervals using the grids 

0,1,i = ( - ),  where . b an h n=  By  

following[21], the cubic spline ( )S x  interpolating the 
functions ( )y x  at the grid points is given by the equation 

  

,ix a ih= +
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where ( ) and ( ).i i i iM x y y xS= =′′  The unknown derivative iM  are related by enforcing the continuity condition on 
( ).S x′  
Differentiating (3), we obtain  

2 2
1

1 1
( ) ( ) 1

( ) ( )
6 2 2 6

i
i i i i

ix x x xh h
x M M y y

h h h
S −

− −

− −
= − + − + −′    

   
  

                  (4) 

From (4) we obtain one sided limits of the derivative as  

1 1  0,1, , -1. 
1( ) ( ),  

3 6
 l i i i i i n

h hS x M M y y
h

+
+ + =′ = − − + −                     (5) 

and 

-
-1 -1 , 1, 2, , .

1 ( ) ( - )
3 6l i i i i  i n  
h hS x M M y y

h
=′ = + +                        (6) 

The continuity condition ( ) ( )l lS x S x+ −′ ′=  gives the consistency relation 

( )2-1 1 11
64 2 ,   1, 2, , -1. ii i ii iM M M y y y i n
h − +++ + = + + =                   (7) 

Now we collocate equation (1) at the uniform grid 

0 0points  ( 0,1, , ) with  and . 

Thus (1) becomes
j nx x jh j n x a x b= + = = =
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Using (3) to approximate the integral terms, we have  
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Now substituting 1i phs s − +=  and simplifying, we obtain  

[
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We now split (10) into two as  

[
1

0 0 0 0 1 1
1 0
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2 3 3
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and 
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Putting (5) for i=0 into equation (11) we find 
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Similarly, putting (6) in (12) yields  
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Equations (13) and (14) together with (6) consist of 2n equations with 2(n+1) unknowns ,  , 0,1, , . i iy M i n= 
 

However, to determine the values of these unknowns, two more equations are required. These equations are obtained by using 
the initial condition (2) and by imposing a free boundary condition  

0 0     M =                                          (15) 

3. Numerical Experiments 
In this section the proposed method described in Section 2 is applied to some illustrative examples of first order 

integro-differential equations. All computations were carried out by using MATLAB 2010b. 
Example 3.1 

Consider the following linear Fredholm integro-differential equation 

( )
1

3 3

0

1( ) 3 ( ) 3 - 2 1   
3

(0) 1  

xy x xsy s ds e e x

y

′ − = +

=

∫  

3   The exact solution is xe  

Example 3.2 
Consider the following integro-differential equation 

1

0

 ( ) 1-  
3

 (0) 0  

( )  x
xsy s ds

y

y x =

=

′ − ∫  

The exact solution is x  

Example 3.3 
Consider  

1

0

 ( ) ( ) 

(0) 0  

x xy x xy s ds xe e x

y

′ − = + −

=

∫  

  The exact solution is xxe  
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Example 3.4 
Consider  

1

2
0

1 1
( ) ( ) ( ) ln(1 )

2 1
1

(ln 2) 1
  y x y x y s ds x x

x
x

s
′ − − = − + − +

++∫  

(0) 0 y = )with the exact solution ( ln( 1)y x x= +  

Table 1.  Absolute Errors for Example 3.1 

x  Proposed method 
1

10h =  Proposed method 
1
20

h =  

0.1 1.4930E-02 2.1268E-05 
0.2 3.0737E-04 8.6690E-05 
0.3 1.5569E-02 1.9615E-04 
0.4 1.2726E-03 3.4948E-04 
0.5 1.6855E-02 5.4646E-04 
0.6 2.8710E-03 7.8680E-04 
0.7 1.8754E-02 1.0701E-03 
0.8 5.0574E-03 1.3958E-03 
0.9 2.1207E-02 1.7632E-03 
1.0 7.7497E-03 2.1714E-03 

Table 2.  Absolute Errors for Example 3.2 

x  

Proposed method

1
10h =  

NHAM(N=10) 
[23] Method in[1] 

CAS wavelets[9] with 

2, 1k m= =  
DTM[6] 

0.1 1.3878E-17 1.0000E-09 2.06509E-04 2.17942375E-04 1.66666667E-03 
0.2 0.0000E+00 1.0000E-09 8.04069E-04 6.38548213E-04 6.09388620E-03 
0.3 5.5511E-17 1.0000E-09 1.72624E-03 7.91370487E-04 1.32017875E-02 
0.4 5.5511E-17 1.0000E-09 2.86044E-03 2.15586005E-02 2.29140636E-02 
0.5 1.1102E-16 1.0000E-09 4.04527E-03 4.99358429E-03 3.51578404E-02 
0.6 1.1102E-16 1.0000E-09 5.06663E-03 2.21728815E-02 6.69648304E-02 
0.7 1.1102E-16 2.0000E-09 5.65279E-03 1.05645449E-04 7.12430514E-02 
0.8 1.1102E-16 3.0000E-09 5.46844E-03 1.43233681E-03 8.63983845E-02 
0.9 1.1102E-16 2.0000E-09 4.10753E-03 2.07747461E-02 1.08103910E-01 
1.0 2.2204E-16 - - - 1.32023989E-01 

Table 3.  Absolute Errors for Example 3.3 

x  Proposed method 1
10h =  Proposed method 1

20h =  
CAS wavelets[9] with 

2, 1k m= =  
DTM[6] 

0.1 3.3341E-03 2.4795E-06 1.34917637E-03 1.00118319E-02 
0.2 3.9241E-05 9.9525E-06 1.15960044E-03 2.78651355E-02 
0.3 3.4132E-03 2.2419E-05 5.67152531E-03 5.08730892E-02 
0.4 1.5805E-04 3.9878E-05 5.93105645E-02 7.55356316E-02 
0.5 3.5717E-03 6.2330E-05 1.32330751E-02 9.71888592E-02 
0.6 3.5638E-04 8.9774E-05 4.3928772E-02 1.09551714E-01 
0.7 3.8098E-03 1.2221E-04 1.41201624E-02 1.04133232E-01 
0.8 6.3418E-04 1.5964E-04 1.34514117E-02 6.94512700E-02 
0.9 4.1273E-03 2.0205E-04 1.32045209E-02 1.00034260E-02 
1.0 9.9138E-04 2.4946E-04 - 1.55147712E-01 
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Table 4.  Numerical Results for Example 3.4 

x  Exact solution Proposed method 1
20h =  

Cheby wavelets[3] with 

43, 3, 10k m ε −= = =  

0.1 0.0953101798 0.0953423290 0.0952889907 
0.2 0.1823215568 0.1823952014 0.8125449463 
0.3 0.2623642645 0.2624897747 0.2624945635 
0.4 0.3364722366 0.3366611089 0.3367692254 
0.5 0.4054651081 0.4057300802 0.4058829389 
0.6 0.4700036292 0.4703588084 0.4704350184 
0.7 0.5306282511 0.5310892563 0.5312459776 
0.8 0.5877866649 0.5883707849 0.5884913528 
0.9 0.6418538862 0.6425802536 0.6427604341 
1.0 0.6931471806 0.6940369650 0.6939446730 

 

4. Conclusions 
In this paper, a new numerical method has been 

successfully developed for solving first order linear 
Fredholm integro-differential equation. The method 
produces a system of algebraic equations which is diagonal; 
hence permits easy algorithm with the associated advantage 
of low computational cost. This method apart from being 
computationally efficient is also simple and reliable. The 
numerical results further established the superiority in terms 
of accuracy of the proposed method over other existing 
methods.  
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