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Abstract

This paper presents a new method namely, Adomain Sumudu Transform Method, a coupling of
the Sumudu transform and Adomain decomposition method, for handling a differential equation
of mixing layer that arises in viscous incompressible fluid. In order to apply the condition
at infinity, we converted the obtained series solution into rational function by using Padé
approximant.
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1 Introduction

Blasius equation is one of the basic equations in fluid dynamics and it describes steady flow of
viscous incompressible fluids over a semi-infinite flat plate [1]. Its first appearance in the literature
was recorded in 1908 [2]. As a result of the application of Blasius equation to fluid flow, engineers,
physicists and mathematicians have special interest in studying the equation and the related
equations with boundary conditions at infinity, especially Falkner-Skan equation. There are two
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forms of the Blasius equation; both forms are represented by the same differential equation but
with different boundary conditions [3, 4, 5]. The existence of a solution for the Blasius equation
was considered and established by [6] using Weyl technique [7]. Because of the challenge posed
by the boundary condition at infinity, authors have suggested various ways of overcoming this
difficulty. Such ways include changing the boundary conditions at infinity into a classical conditions
[8], converting the Blasius equation(a boundary value problem) to a pair of initial value problems
[9, 10] and then solving the pair of initial value problems. Another possible way to do this is by
applying the Padé approximation technique if the solution obtained is a series. Many numerical,
analytical and semi-analytical methods have been investigated for solving this equation. Some
of these methods are finite difference, Adomain decomposition, perturbation methods, differential
transform and variation iteration methods. Inspite of the numerous efforts however, a truly simple,
yet numerically accurate algorithm is still missing. Therefore, this paper seeks to develop a simple
and reliable method for solving the Blasius equation of the form considered by [3, 4, 11]. We shall
use the Padé approximants to handle the boundary conditions at infinity.

2 Some Preliminaries

In this section, we present a brief review three methods which serve as the building blocks for the
proposed method.

2.1 Sumudu transform

Among the common integral transforms in the literature that are widely used in physics, astronomy
and engineering are Fourier, Laplace, Hankel and Mellin Transform. However, Sumudu transform
was introduced in 1993 by Watugala [12] to solve differential equations and control engineering
problems. Since then, several authors have studied its properties, application to solving various
problems and its relationship with some other common integral transforms such as Laplace transform
[12, 13, 14, 15]. Apart from some other advantages of Sumudu transform over other integral
transforms such as simplicity and accuracy, Zhang [16] noted that a very interesting fact about
Sumudu transform is that the original function and its Sumudu transform have the same Taylor
coefficients except a factor of n!

The Sumudu transform of a function f(t), defined for all real numbers t ≥ 0, is the function F (u),
defined by

S (f(t)) = F (u) =

∫ ∞

0

1

u
e(

−t
u )f(t)dt, (2.1)

where the symbol S denotes the Sumudu transform.

Few basic properties of the Sumudu transform:

If c1, c2 are non-negative constants, f(t) and g(t) are functions having Sumudu transform F (u) and
G(u), respectively, then

1. Linearity Property
S [c1f(t) + c2g(t)] = c1S [f(t)] + c2S [g(t)] (2.2)

2. Convolution Property
S [(f ∗ g) (t)] = uS [f(t)] + S [g(t)] (2.3)

3. Differentiation Property

S
[
f (n)(t)

}
= u−n

[
F (u)−

n−1∑
k=0

ukf (k)(0)

]
(2.4)
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2.2 Adomain decomposition method

In recent years, Adomain decomposition method(ADM) has been applied to solve a wide range of
linear and nonlinear differential, integral and integro-differential equations [17, 18, 19]. Unlike many
other methods, ADM provides solution to nonlinear problems without linearization, perturbation
or discretization in form of a convergent series. We now illustrate the basic principles of ADM.

Consider a general functional equation

Lu+Ru+Nu = g(t), (2.5)

where u(t) is the unknown function and the linear terms are decomposed into L+R and Nu denotes
the nonlinear terms. L is usually the highest order differential operator and invertible, R is the
remainder of the linear operator and g(t) is the source term.

Applying the inverse linear operator L−1 to both sides of (2.5) gives

L−1Lu = L−1g − L−1Ru− L−1Nu. (2.6)

If L is a second-order linear differential operator, L−1 is a two-fold integral operator, then we get

u = A+Bt+ L−1g − L−1Ru− L−1Nu, (2.7)

where A and B are the constants of integration and can be found from the initial or boundary
conditions. ADM decomposes the solution into a series

u =

∞∑
n=0

Un, (2.8)

and decomposes the nonlinear terms Nu into a series

Nu =

∞∑
n=0

An, (2.9)

where An are the Adomain polynomials. Substituting (2.8) and (2.9) into (2.7), we obtain the
solution

un = A+Bt+ L−1g − L−1

[
R

∞∑
n=0

un +

∞∑
n=0

An

]
, (2.10)

where the Adomain polynomial An can be generated by using the formula [17].

An =
1

n!

dn

dλn

[
N

(
∞∑
i=0

λiui

)]
λ=0

, n = 0, 1, · · · . (2.11)

The solution components un(x) may be determined by using the classic Adomain recursive scheme
as follows:

u0 = A+Bt+ L−1g, (2.12)

un+1 = −L−1 [Run +An] , n ≥ 0. (2.13)
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2.3 Padé approximant

Often time, power series don’t give a good approximation to a function except the radius of
convergence is sufficiently large to contain the domain [a, b] over which the function is approximated.
In order to make the maximum error as small as possible, a rational(Padé) approximation method
which has a smaller error on [a, b] than a polynomial approximation can be constructed. Padé
approximation to f(x) on [a, b] is the quotient of two polynomials PN (x) and QM (x) of degrees N
and M , respectively. We use [N/M ] to denote this quotient [20] such that

[N/M ] =
PN (x)

QM (x)
, a ≤ x ≤ b. (2.14)

The polynomials PN (x) andQM (x) are constructed in such a way that f(x) and the Padé approximant
as well as their derivatives up to N + M agree at x = 0. Assume that f(x) is analytic and has
Maclaurin series expansion

f(x) = a0 + a1x+ a2x
2 + · · ·+ akx

k + · · · , (2.15)

and form the difference f(x)QM (x)− PN (x) = Z(x) :(
∞∑
i=0

aix
i

)(
1 +

M∑
i=1

qix
i

)
−

(
N∑
i=0

pix
i

)
=

(
∞∑

i=N+M+1

cix
i

)
(2.16)

Expanding (2.16) and equating the coefficients of powers of xi to zero for i = 0, 1, · · · , N + M ,
produces N + M + 1 linear equations which are solved to determine the values of the coefficients
q1.q2, · · · , qM , p0, p1, · · · , pN .

For a fixed value of N + M the error in the approximation is smallest when PN (x) and QM (x)
have the same degree or when PN (x) has degree one higher than QM (x).

3 Analysis of Adomain Sumudu Transform Method
(ASTM)

Consider the Blasius equation

f ′′′(η) +
1

2
f(η)f ′′(η) = 0, 0 < η < ∞ (3.1)

subject to the boundary conditions

f(0) = 0, f ′(0) = 1, f ′(∞) = 0. (3.2)

Taking the Sumudu transform of both sides of (3.1), we have

S
[
f ′′′(η)

]
= −1

2
S
[
f(η)f ′′(η)

]
(3.3)

Applying the differentiation property of Sumudu transform to the LHS of (3.3), we have

1

u3

[
S [f(η)]− f(0)− uf ′(0)− u2f ′′(0)

]
= −1

2
S
[
f(η)f ′′(η)

]
(3.4)

Substituting the initial conditions, with the assumption that f ′′(0) = α, we obtain

S [f(η)] = u+ αu2 − 1

2
u3S

[
f(η)f ′′(η)

]
(3.5)
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Taking the inverse Sumudu on both sides of equation (3.5), we find

f(η) = η +
1

2!
αη2 − 1

2
S−1 [u3S

[
f(η)f ′′(η)

]]
(3.6)

The Sumudu decomposition method assumes a series solution of the function f(η) given by

f(η) =

∞∑
n=0

fn(η), (3.7)

so that (3.6) becomes

∞∑
n=0

fn(η) = η +
1

2!
αη2 − 1

2
S−1

[
u3S

(
∞∑

n=0

An

)]
, (3.8)

where
∞∑

n=0

An = f(η)f ′′(η), (3.9)

and the Adomain polynomials An are calculated by using the formula

An =
1

n!

dn

dλn

[(
∞∑
i=0

λifi

)(
∞∑
i=0

λif ′′
i

)]
λ=0

, n = 0, 1, · · · . (3.10)

The first few Adomain polynomials are obtained as follows:

A0 = f0(η)f
′′
0 (η) (3.11)

A1 = f0(η)f
′′
1 (η) + f1(η)f

′′
0 (η) (3.12)

A2 = f0(η)f
′′
2 (η) + f1(η)f

′′
1 (η) + f2(η)f

′′
0 (η) (3.13)

A3 = f0(η)f
′′
3 (η) + f1(η)f

′′
2 (η) + f2(η)f

′′
1 (η) + f3(η)f

′′
0 (η) (3.14)

A4 = f0(η)f
′′
4 (η) + f1(η)f

′′
3 (η) + f2(η)f

′′
2 (η) + f3(η)f

′′
1 (η) + f4(η)f

′′
0 (η) (3.15)

A5 = f0(η)f
′′
5 (η) + f1(η)f

′′
4 (η) + f2(η)f

′′
3 (η) + f3(η)f

′′
2 (η) + f4(η)f

′′
1 (η) + f5(η)f

′′
0 (η) (3.16)

We now take

f0(η) = η +
1

2!
αη2 (3.17)

as the first approximation to f(η) in equation (3.6), and the higher iterates of f(η) are obtained
from the recurrence relation

fn+1(η) = −1

2
S−1

[
u3S

(
∞∑

n=0

An

)]
, n ≥ 0. (3.18)

Thus, we have

f1(η) = − 1

48
αη4 − 1

240
α2η5, (3.19)

f2(η) =
1

960
αη6 +

11

20160
α2η7 +

11

161280
α3η8, (3.20)

f3(η) = − 1

21504
αη8 − 43

967680
α2η9 − 5

387072
α3η10 − 1

4257792
α4η11. (3.21)
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Therefore, the solution of (3.1) is in a series form given by

f(η) = η +
1

2
αη2 − 1

48
αη4 − 1

240
α2η5 +

1

960
αη6 +

11

20160
α2η7 +

(
11α3

161280
− α

21504

)
η8

− 43

967680
α2η9 − 5

387072
α3η10 − 1

4257792
α4η11 + · · · , (3.22)

and so

f ′(η) = 1 + αη − 1

12
αη3 − 1

48
α2η4 +

1

160
αη5 +

11

2880
α2η6 +

(
11

20160
α3 − 1

2688

)
η7

− 43

107520
α2η8 − 25

193536
α3η9 − 5

387072
α4η10 + · · · (3.23)

We are now to determine the value of the constant α by using the condition at ∞, that is, f(∞) = 0.
However, since it is impossible to apply this condition directly to (3.23), we obtain rational function
representations of (3.23) by using the Padé approximants. Following the illustration given in section
2.3, the Padé approximant [2/2] to f ′(η) of degree 4 from equation (3.23) is obtained as

[2/2] =
1 + 3

4
αη +

(
1
12

− 1
4
α2
)
η2

1− 1
4
αη + 1

12
η2

. (3.24)

Applying the condition f(∞) = 0 yields

α = 0.5773502692. (3.25)

In a similar manner, for Padé approximant [3/3] to f ′(η) of degree 6 we obtain

α = 0.5163977795, (3.26)

and likewise Padé approximant [4/4] gives

α = 0.5227030798. (3.27)

Comparison of Numerical values of α = f ′′(0)

Padé Approximant ASTM VIM [3] MADM[4]

[2/2] 0.5773502692 0.5773502692 0.5773502693
[3/3] 0.5163977795 0.5163977793 0.5163977793
[4/4] 0.5227030798 0.5227030796 0.5227030798

4 Conclusion

We employed the combination of Sumudu transform and Adomian decomposition method to obtain
a closed form solution of the Blasius equation. The new method is free of unnecessary mathematical
complexities. Although the problem considered has no exact solution, the accuracy and reliability
of the new method are guaranteed because the results obtained are in complete agreement with
those obtained by powerful methods like modified Adomain decomposition(MADM) and variation
iteration method(VIM).

Competing Interests

Authors have declared that no competing interests exist.

6



Ogunlaran and Sagay-Yusuf; BJMCS, 14(3), 1-8, 2016; Article no.BJMCS.23104

References

[1] Motsa SS, Marewo GT, Sibanda P, Shateyi S. An improved spectral homotopy analysis method
for solving boundary layer problems. Boundary Value Problems. 2011;2011:3.

[2] Blasius H. Grenrschichten in Flussigkeiten mit kleiner Reibung. Z. Math, U. Phys. 1908;56:1-
37.

[3] Wazwaz AM. The variational iteration method for solving two forms of Blasius equation on a
half-infinite domain. Applied Mathematics and Computation. 2007;188:485-491.

[4] Wazwaz AM. A reliable algorithm for solving boundary value problems for higher-order integro-
differential equations. Applied Mathematics and Computation. 2001;118:327-342.

[5] Belhachmi Z, Bright B, Taous K. On the concave solutions of the Blasius equation, Acta Math.
Univ. Comenianse. 2000;LXIX:199-214.

[6] Abu-Sitta AMM. A note on a certain boundary-layer equation. Applied Mathematics and
Computation. 1994;4:73-77.

[7] Weyl H. On the differential equations of the simplest boundary layer problem. Ann. Math.
1942;43:381-407.

[8] Ebaid A, Al-Armani N. A new approach for a class of the Blasius problem via a transformation
and Adomians method. Abstract and Applied Analysis. 2013;2013.
Available: http://dx.doi.org/10.1155/2013/753049
Article ID 753049, 8 pages.

[9] Hassan YQ, Zhu LM. A note on the use of modified Adomian decomposition method for
solving singular boundary value problems of higher-order ordinary differential equations.
Communications in Nonlinear Science and Numerical Simulation. 2009;14: 3261-3265.

[10] Hassan YQ, Zhu LM. Solving singular boundary value problems of higher-order ordinary
differential equations by modified Adomian decomposition method. Communications in
Nonlinear Science and Numerical Simulation. 2009;14:2592-2596.

[11] Wazwaz AM. A study on a boundary-layer equation arising in an incompressible fluid. Appl.
Math. Comput. 1997;87:199-204.

[12] Watugala GK. Sumudu transform: a new integral transform to solve differential equations and
control engineering problems. Int. J. Math. Educ. Sci. Technol. 1993;24:35-43.

[13] Belgacem FBM. Introducing and analysing deeper Sumudu properties. Nonlinear Studies.
2006;13:23-41.

[14] Belgacem FBM, Karaballi AA. Sumudu transform fundamental properties investigations and
applications. Journal of Applied Mathematics and Stochastic Analysis. 2006;1-23.

[15] Belgacem FBM, Karaballi AA, Kalla AS. Analytical investigation of the Sumudu transform
and applications to integral production equations. Mathematical Problems in Engineering.
2003;2003:103-118.

[16] Zhang J. A Sumudu based algorithm for solving differential equations. Computer Science
Journal of Moldova. 2007;15:303-313.

[17] Wazwaz AM. A new algorithm for calculating Adomian polynomials for nonlinear operators.
Appl. Math. Comput. 2000;111:53-69.

[18] Wazwaz AM. The modified decomposition method and Padé approximants for solving the
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