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In this paper, we use a non-polynomial spline method to develop a numerical technique for solving
linear fourth-order boundary-value problems which are first reduced to a system of second-order
boundary-value problems. Three nhumerical examples are considered to demonstrate the usefulness of
the method and to show that the method converges with sufficient accuracy to the exact solutions.
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INTRODUCTION
We use a non-polynomial spline approximation to
develop a new method for obtaining smooth

approximations to the solutions of fourth-order boundary-
value problems of the form:

U (30 +a, Cou” (%) +a, Ou’ (%) +a, (u (%) +a,(Ou() = £ (), a<x<b (1)

along with the boundary conditions

ua)=q, u(b)=04,}
Where «,, f,,i=0,1 are arbitrary finite real constants
and a,(x), a,(x), a,(x), a,(x) and f (x) are

continuous on [a,b]. The analytical solution of problem

(1) with boundary conditions (2) cannot be determined for
any arbitrary choice of

a,(x), a,(x), a;(x), a,(x) and f(x).  We therefore

employ numerical methods for obtaining approximate
solution to the problem. Papamichael et al. (1981) con-
sidered and developed a cubic-spline method for the
solution of the following fourth-order boundary-value
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problem:

W@+ )0 =g(x), as<x<b (3

ya=0, yb=q 4)
=4, yb=4 )
where «,, p.,i=0,1 are finite real constants and the

functions f(x) and g(x) are continuous in [a,b].

Alberg and lto (1975) used a collocation method for
obtaining the solution of second-order boundary-value
problems. Usmani (1978) presented three finite-
difference techniques, of order 2, 4 and 6 respectively, for
the solution of (3) to (5). Siddigi et al. (2008) used quintic
spline to solve the same boundary-value problems. Taiwo
et al. (2008) derived polynomial cubic-spline methods to
solve (1) and (2). Usmani (1980) derived cubic-, quartic-
and sextic-spline methods for the numerical solution of
the non-linear second-order boundary-value problems.
Sixth-degree B-spline was developed for the solution of
fifth-order boundary-value problems by Caglar et al.
(1999). Al-Said (2008) and Rashidinia et al. (2007)
derived quadratic- and cubic-spline techniques for the
solution of fourth-order obstacle problems, respectively;
while Siraj-ul-Islam et al. (2006) presented a quadratic
non-polynomial spline method for the solution of second-
order obstacle problems.



In order to solve (1) with the associated boundary
conditions (2), we reduce (1) to a system of second-order
differential equations as:

V() +a, (x)V'(x) +a, ()v(x) + a; ()’ (x) + a, (x)u(x) = f(x)
W (x)=v(x)=0

(6)
with the boundary conditions
u(a) = q,, u(b)=0{1}
v =4, vb)=p (7)

DESCRIPTION OF NON-POLYNOMIAL SPLINE METHOD

To derive the non-polynomial spline approximation S to (6) with
boundary conditions (7), we discretize the interval [a,b] using
equally spaced knots
x, =a+ih, i=0,1,...,n.x,=a, x,=b and h= """/
where 71 is any arbitrary positive integer.

A function S of class C >[4, b ], which interpolates 1(X) at the

mesh points xl., i=0,1,...,n depends on a parameter k , and

reduces to the normal cubic spline s (x) in [a,b] ask — 0, is
termed as non-polynomial spline function.

For each segment [x,x. ], i=0,L...,n—1, the non-

polynomial spline S, (x) has the form

S, (x)=a,+b,(x—x,)+c,sink(x—x,)+d,cosk(x—x,), i=0,1,...,n-1

(8)
where a,,b.,c, andd, are constants and k is a free
parameter.

Let #; be an approximation tou(X;), obtained by the segment
S.(x) of the mixed spline function passing through the

points (x;,u,) and (x ). S.(x) is required to satisfy the

1+l 1+l

interpolatory conditions at X, and x,_ ., , the boundary conditions

i+l
(7) and the continuity condition of first derivatives at the common

nodes (X, ;).
In order to obtain the coefficients in expression (8) in terms of

u, u,,,M,and M, , we define:

S =u, S0)=u,, Sx)=M, S(x,)=M

i+

(9)

Uy

After some algebraic manipulations, we obtain
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M,
a. =u, +k—2, b, = 1(”,+1_”i)+kl_9(M,'+1 M)
_M‘
c, = M, ,cos@-M d = !
" k’sin Csing wmh 4 k*
where 8 =kh, i=0,1,...,n—1.
(10)

Using the continuity condition of the first derivative at (x,,u,), that

is S, (x,)=S/(x,), we obtain the following consistency relation

| asd 1
+2(32 0sm0)M+(Bsin0 ez)M"*‘ ()

1 1 1
?(Ml = 21/{[ +M+l) (ama—?)M
i=12..,n-1

For the purpose of simplicity, we write (11) as

L(ui—l —2u,tu,)=aM,_ +2M, +aM

hZ
-1 -1 _ _cosf
Wherea_&sin@ ez’ﬂ 2 @sind
(12a)

In a similar manner, we get for V()

hz v, —2v,+v,)=aN, +2N.+aN,,,
(12b)
Now the corresponding truncation error associated with (12a) is

=u(x_,)—2u(x)+u(x,) - (o (x ) +26u"(x)+ ol (x,,))
Applying Taylor's theorem and sm]phfylng, we obtain

T=r(1-2a-2p)u +£ (1 12a)u;"+ (1 0u +. . ....
i=12,...n
(13)
Hence, for arbitrary choice of & andﬁsatisfying the

conditon | =2 —2 =0, implies that the method (12a) is
second-order convergent. The method will be fourth-order

convergentif | —2a—24 =0 and a=1/12.

APPLICATION OF NON-POLYNOMIAL SPLINE

To illustrate the application of the numerical method developed in
the previous section, we discretize (6) at mesh points

(x;,u;) and (x;,v;). So we have

Vi+a,(x)v, +a,(x)v, +a,(x)u +a,(x)u, = f(x,)
u —v, =0
(14)
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Substituting M, = ul” and N, = Vi” in (14) and rewriting, we obtain,

(15)

N,' = f(x[) _al(x[)vil_az(x[)v[ _a3(xi)ui/_a4(xi)ui
M. =v,

We use the following O(h*) finite-difference approximations for the first derivative of v and u in Equation (15)

u[' = Uiy, — U,y , Vi, = Vier — Vi
2h 2h
, 3u.., —4u. +u. , 3v.., —4v. + v,
ui+1 = i+1 i i—1 , V,'+1 = i+1 i i—1 (16)
2h 2h
, —u,, +4u, —3u, ’ “Vig t4v, -3v,,
u, | = s> Vi =
2h 2h
Substituting (16) into (15), we obtain the following:
u —u,
Vier — Vi i+ 1 -1
N, = f(x,)- al(xi)#— a,(x,)v, - a3(xl.)lT— a,(x)u, (17)
3v.,, —4v. +v,_
N =f(x)—a(x,) - 2hl = —a,(x,)v,
3u. , —4u. +u,_
—ay(x;,,) —*= : H—a, (X, )ugy, (18)
2h
-V, + 4vl. -3v,,
N, = x_)—a,(x,_,) —a,(x,_)v,_
1 f( 1 l( 1 Zh 2( 1 1
U, + 4ul. =3u,_,
—as(x,_,) —a,(x,_)u, 19)
5 (X, h e 1 (
M, =v, (20)
Mi+1 =Vin (21)
M. =v_ (22)
Now, substituting Equations (17) to (19) into (12b) and simplifying, we obtain
3aa, (x;_) 2fa,(x.) «aa,(x.,,) 1 —4aa, (x; ;) daa,(x. ;) 2
1Y5-1 _aaz(xi_1)+ | 1YY+l -— v+ 1Vhi-1 —Zﬁaz(xi)‘*' 1YY+l +7 v,
2h 2h 2h h 2h 2h h
aap(x;_)  2Pay(x;)  3aag(x;,) 1 3aay(x;_y) Zﬁa3(xi) aas (x;,,)
+ - - —aay () =y it T —aay () + - Ui
2h 2h 2h h 2h 2h 2h
—40{a3 (xi—l) 4a/a3 (xl.+1) aa (xi—l) Zﬁa3 (xl.) 3a/a3 (xl.+1)
+| ——————2fa,(x;) + u; + - - —aay (X)) |44y
2h 2h 2h 2h 2h

= - af(xi_l) - Zﬁf(xl) - af(xi_H)
For the purpose of simplicity, we rewrite (23) as

X v, +Yywv+Z v, +X,u,_ +Y,u+Z,u, = -af(x_)-28f(x)-af(x,))

1i"i-1 1i7i 1i"i+1

i=1,2,...,n-1.

@)

(24)



where
L= 3aay(x,,) —aa,(x,) + 2fa,(x;) _aas(x;,,)
2h 2h 2h
-4daa,(x, ) 4aa,(x,,)
Yys —— - 2Bau(x) + —— =
and
Z,= aa,(x,,) 2fa,(x,) 3aa,(x,) aa,(x,.)
2h 2h 2h
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Similarly, substituting Equations (20) to (22) into (12a) and simplifying, we get

Xy Y+ Zyv, + Xgu  + Yyu+ Zu,, =0

i=12,...,n—1,

2
Where X, =Z, =, Y¥,,=28, X, =2, =——., Y, =—

3i

Therefore, Equations (24), (25) and the boundary conditions (7)
give a complete system of 2(n +1) linear equations in 2(n +1)
unknowns.

NUMERICAL RESULTS

We solve three boundary-value problems using step
lengths &= )% and h= ), to test the performance of the

method developed. The numerical results are
summarized in Tables 1 to 3 while, Figures 1 to 3 give
additional information about the results.

Example 1

Consider the following problem.

ut (x)—u(x)=0

subject to the boundary conditions
u(0)=u"(0)=1
u)y=u"(1)=0 }

el—x

with u(x) = —ex_l) as its exact solution.

1
2sinh(1)

Example 2

ulV (x)=2u”(x)+u(x)=—-8e*
subject to the boundary conditions

u(0)=u(l)=0
u”(0)=0, u’(1)=—4e

The exact solution is u(x) = x(1—- x)e™.

(25)

Example 3

WV () = 2u”(x)+u"(x) =0
subject to the boundary conditions
u(0)=u"”0)=1
uDH=u"Q) =e }

The exact solution is u(x) = e”

Our numerical results on the test problems show an
improvement in the results when nr=}, is used

compared to when n = is used for each of u,, ul' and

u, in the three cases considered, as reflected in

reduction of absolute errors in Tables 1 to 3 and Figures
1t0 3.

The maximum absolute errors in u, in Example 1 are
3.531E-7 and 2209E-8 for n=4% and h=}Y,
respectively, and are reached at x=0.4; while the
maximum absolute errors in , in Example 2 are

l
3.568E-5 and 2.235E-6 for h=Y% and h=Y,,

respectively, which are attained at x=0.6. In Example
3, the maximum absolute errors are 1.434E-4 and
3.564E-5 for , = »x and h=);, respectively, and are

reached at x=0.6. Therefore, maximum absolute
errorin u, is attained when x is around the middle of the
interval [, »]. Itis equally observed from the figures that
absolute errors in u; exhibit similar pattern of behaviour
as absolute errors in i, over the interval [a, b].

The proposed method is of order O (h*) , as established
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Table 1. Observed absolute errors in Example 1.

1 1 1

X.
l h:% h:%o h:% h:%o h:% h:%o

0 0 0 5.920E-4 7.852E-5 0 0
0.2 2.723E-7 1.704E-8 4.372E-4 5.873E-5 2.723E-7 1.704E-8
0.4 3.531E-7 2.209E-8 3.028E-4 4.131E-5 3.531E-7 2.209E-8
0.6 3.027E-7 1.894E-8 1.769E-4 2.557E-5 3.027E-7 1.894E-8
0.8 1.709E-7 1.069E-8 6.005E-5 1.088E-5 1.709E-7 1.069E-8
1.0 0 0 5.415E-5 3.370E-6 0 0

Table 2. Observed absolute errors in Example 2.

1 1 1

l h:% h:%o h:% h:%o h:% h:%o
0 0 0 3.398E-3 3.772E-4 0 0
0.2 1.960E-5 1.228E-6 5.058E-3 5.700E-4 3.858E-5 2.416E-6
0.4 3.211E-5 2.012E-6 7.390E-3 8.411E-4 6.271E-5 3.927E-6
0.6 3.568E-5 2.235E-6 1.062E-2 1.218E-3 6.887E-5 4.313E-6
0.8 2.683E-5 1.681E-6 1.505E-2 1.735E-3 5.106E-5 3.197E-6
1.0 0 0 1.568E-2 2.105E-3 0 0

Table 3. Observed absolute errors in Example 3.

X.
h=) h= ) h=J) h= ) h=% h= Y

0 0 0 3.097E-4 1.848E-5 0 0

0.2 8.075E-5 2.008E-5 5.387E-4 1.735E-5 6.618E-4 1.635E-4

0.4 1.357E-4 3.373E-5 9.278E-4 8.798E-5 1.214E-3 2.996E-4

0.6 1.434E-4 3.564E-5 1.447E-3 1.850E-4 1.485E-3 3.661E-4

0.8 9.408E-5 2.339E-5 2.027E-3 2.895E-4 1.211E-3 2.982E-4

1.0 0 0 1.148E-3 8.753E-5 0 0
in expression (13), if error in u, by a factor of 16 in Examples 1 and 2; while
=}, 1-20-23=0 and a,(x)=a,(x)=0. However, the same reduction produces a reduction of absolute
if either a,(x)#0 ora,(x)#0 or both error in u, by a factor of 4 in Example 3, as can be

a,(x)#0 and a,(x) #0, the technique produces an observed in Tables 1 to 3. Richardson’s extrapolation
method can be applied in conjunction with the proposed

order O(h®) result because the finite-difference method to further enhance its accuracy.

approximations of first derivative of ¥ and v used are of

O(h*). This accounts for the reason why when h is CONCLUSION

reduced by a factor of 2 it leads to a reduction of absolute A non-polynomial spline method has been considered for
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Figure 1. Comparison of absolute errors in (a) u, (b) u' and (c) u" for two step sizes in Example 1.
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Figure 2. Comparison of absolute errors in (a) u, (b) u', (c) u" for two step sizes in Example 2.
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Figure 3. Comparison of absolute errors in (a) u, (b) u', (c) u" for two step sizes in Example 3.

the numerical solution of fourth-order boundary value
problems. The method is tested on three problems and
the results obtained are very encouraging. The method is
simple and easy to apply.
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