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Abstract 
 

There are several sorting algorithms in existence. Some are well known while others are not so 
well known, but important. However, more and more are s till being developed to take care of the 
weaknesses of the existing ones and to make sorting simpler to implement. One of such new 

algorithms is the Modified Diminishing Increment Sorting (MDIS). In this article, a review is carried 
out of this algorithm and the several existing algorithms it has been employed to improve. In 
addition, a variant of MDIS christened Circlesort which applies MDIS in a recursive manner is 

also presented. Its performance comparisons with MDIS and other notable algorithms in the b est 
case, average case and the worst case are presented. This review will help prospective 
application developers that need to implement sorting determine when MDIS and its variant are 

strong and when the algorithms compared with them also have their own s trengths so as to guide 
their choices.  
 

Keywords: Diminishing Increment Sorting, Modified Diminishing Increment Sorting, 

Performance. Efficiency, Circlesort, Shellsort, Improved Shellsort, Oyelami’s Sort.

 

 
1. INTRODUCTION 
Sorting is considered to be the most fundamental problem in the study of algorithms [1]. This is 
why this subject is worth considering. The more sorting algorithms there are, the better and the 
merrier because different sorting algorithms are suitable for different data characteristics and 

according to Donald Ervin Knuth, who is a renowned computer scientist and the author of one of 
the most respected references in computer science, “There is no known ‘best’ way to sort; there 
are many best methods, depending on what is  to be sorted,  on what  machine and for what 

purpose” [2]. Among several simple sorting algorithms available is Insertion Sort. This sorting 
algorithm belongs to a class of sorting algorithm christened “incremental sorting algorithms”. 
Incremental sorting algorithms create order by processing each item in turn and placing it in its 

correct position [3]. This algorithm is efficient in the best case as it takes O(n). However, in the 
average and worst case scenarios, it takes O(n

2
). The reason for this increase in the running time 

is that it swaps only adjacent elements. If the algorithm is to sort a list in ascending order of 

magnitude, it will take n steps to swap the smallest element that is in the last position in a list 
containing n elements. In a bid to solve this problem, Shellsort was invented by Donald L. Shell. 
The algorithm allows the swapping of elements that are not in order and that are far apart by 

dividing the list into subsequences and then sorting these subsequences. With this approach, it 
runs faster than Insertion Sort.  
 

There have been several subsequences proposed to improve Shellsort. However, the most 
efficient among them is the “Modified Diminishing increment Sorting” (MDIS). This sorting 
approach has been used to improve several sorting algorithms and it runs O(n) in the worst case. 

This article presents this approach and the several sorting algorithms it has been lately used to 
improve. The results of these algorithms’ performances as compared with others are als o 
presented.  
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2. METHODOLOGY 
Three fundamental algorithms namely Insertion Sort, Bubble Sort and Quicksort were considered. 

The various improvements on these algorithms were considered and then the various ways in 
which MDIS has been used to improve these algorithms were also considered. The performances 
of the MDIS-based improved algorithms were made with the ones they improved as well as 

others and the implications of the results were noted and presented. A variant of MDIS, Circlesort 
was also considered and its performances with some established algorithms including MDIS were 
noted and presented with the implications.  

 
3. REVIEW OF RELATED WORKS 
In [4], Quicksort, Heapsort, Insertion Sort and Mergesort were compared to determine when best 
each of them can be used. The results obtained show that, for a list size of range 10,000 to 
30,000, Insertion Sort was slower than all the other three while Quicksort is the most preferred of 

the three. In [5] the performances of Bubble Sort, Selection Sort, Insertion Sort, Mergesort and 
Quicksort were compared in terms of time complexity, space complexity, sorting approach, 
stability, whether the algorithm sorts in place or not, whether they are internal or external and the 

methods of sorting. In [6], useful and detailed guides about how complexity of sorting algorithms 
could be studied were provided. The authors also showed that every sorting algorithm could be 
made more efficient through intelligent study for enhancement. In [7], the asymptotic running 

times in the average and worst cases as well as the advantages and disadvantages of Bubble 
Sort, Insertion Sort, Selection Sort, Heapsort, Mergesort, In -place Mergesort, Shellsort, Cocktail 
Sort, Quicksort, Library Sort and Gnome Sort were compared. Kapur et al. in [8] proposed a two-

way sorting technique christened End-to-End Bidirectional Sorting (EEBS) to improve some 
existing quadratic time sorting algorithms. The authors carried out experimental analysis of EEBS 
and compared the results with those of Bubble Sort, Selection Sort, and Insertion Sort in the 

average and worst cases. The results showed that EEBS is more efficient than all of the 
considered algorithms. In [9], Elkahlout and Maghari compared Comb, Cocktail and Counting 
sorting algorithms to determine the fastest. The implementation of the algorithms was done in 
Java and the three algorithms sorted the same set of numeric data. The results obtained show 

Cocktail Sort was the most efficient followed by Counting Sort and lastly Comb.  In [10], Al-
Kharabsheh et al. compared Grouping Comparison Sort (GCS) with Selection Sort, Quicksort. 
Insertion Sort. Mergesort and Bubble Sort in terms of execution speed. The results obtained show 

that Quicksort is the fastest while Bubble sort is the slowest. In the average and worst cases, 
Comparison Sort tally in execution speed with Selection Sort, Insertion Sort and Bubble Sort.   
How Insertion Sort, Selection Sort, Quicksort, Bubble Sort and Mergesort work  are presented in 

[11]. Their advantages and disadvantages were presented and their space and time complexities 
compared.  
 

Bubble Sort, Selection Sort, Mergesort and Insertion Sort are examined in [12] and a new 
algorithm called Index Sort evolved. The performance of index Sort and the other four were 
compared to determine the fastest. The results obtained show that for small list sizes, all the five 

algorithms performed almost equally. However, for large lists sizes, Mergesort is the fastest. 
Index Sort performed well for all list sizes. It is faster than all the other four for small sizes of the 
lists to be sorted. For higher-sized lists, it is slower than Insertion Sort, Selction Sort and 

Mergesort, but faster than Bubble Sort.  

 
Rao and Ramesh in [13] experimentally carried out the evaluation of the running time and space 
complexities of Quicksort, Mergesort, Radix Sort, Bubble Sort, Gnome Sort, Cocktail Sort and 
Counting Sort.  The results obtained showed that in the average case, Radix Sort, Counting Sort, 

Quicksort, Shellsort and Mergesort performed better than the others. In the worst case, Mergesort 
performed better than Quicksort. When the size of the list is small, there was no significant 
difference in the performances of all the algorithms considered. However, when the list size 

increases, Radix Sort, performed better than the others. For space utilization, Quicksort and 
Mergesort were worse.  
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Joshi et al. in [14] compared non-comparison-based sorting algorithms and their average and 
worst cases performances.  The algorithms considered are Bucket Sort, Counting Sort, Radix 

Sort, MSD Radix Sort and LSD Radix Sort. The advantages and disadvantages of each ere also 
highlighted.  

 
4. INSERTION SORT 
Insertion Sort is a sorting algorithm that assumes that the first number on the list to be sorted is 
already sorted. The second number is then compared with the first. If less than, then the second 

is swapped with the first if the sorting is done in ascending order of magnitude. The third number 
is also compared with the second and swapped if they are not in order. If the numbers are in 
order, no swapping will take place.  The second is now compared with the first and swapped if not 

in order, but no swapping takes place if they are in order. The process continues with the fourth 
number until  the last one on the list is picked and necessary actions taken.  Insertion Sort is very 
efficient for sorting nearly sorted lists and it  needs no extra storage in that it sorts in place. 

However, it is not efficient for sorting elements in reverse order and especially so for large lists. 
The algorithm is presented below:  
 

insertionsort(A, size:int) 
Begin 
1) for i =2 to size of A [A is the array, while size is the length of the array A]  

begin 
2) temp = A[i] [ temp is a temporary storage]  
[insert A[i] into the sorted sequence a[1…i-1] 

3) j = i -1 [j is 1 position less than the current position of i]  
4) while (j > 0 and a[j] > temp) 
   begin 

   5) A[j + 1] = A[j] [Store A[j] in 
   position (j + 1) ] 
   6) j = j - 1 

   end 
7) A [j + 1] = temp 
  end 

End 
 
Listing 1: Insertion Sort [15] 

 
Insertion Sort is illustrated below:  
 

Unsorted array: 
[40, 17, 45, 82, 62, 32, 30, 44, 93, 10]  
after pass 1: 17* 40 45 82 62 32 30 44 93 10 

-- -- 
after pass 2: 17 40 45* 82 62 32 30 44 93 10 
-- -- -- 

after pass 3: 17 40 45 82* 62 32 30 44 93 10 
-- -- -- -- 
after pass 4: 17 40 45 62* 82 32 30 44 93 10 

-- -- -- -- -- 
after pass 5: 17 32* 40 45 62 82 30 44 93 10 
-- -- -- -- -- -- 

after pass 6: 17 30* 32 40 45 62 82 44 93 10 
-- -- -- -- -- -- -- 
after pass 7: 17 30 32 40 44* 45 62 82 93 10 

-- -- -- -- -- -- -- -- 
after pass 8: 17 30 32 40 44 45 62 82 93* 10 
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-- -- -- -- -- -- -- -- -- 
after pass 9: 10* 17 30 32 40 44 45 62 82 93 

-- -- -- -- -- -- -- -- -- -- 
Sorted array: 
[10, 17, 30, 32, 40, 44, 45, 62, 82, 93]  

 
FIGURE 1: Illustration of Insertion Sort [16]. 

 

5. SHELLSORT 
In a bid to improve the performance achieved by Insertion Sort, D. L. Shell came up with a sorting 
algorithm christened Shellsort after him. The algorithm is also referred to as diminishing 
increment sort [17]. It has a reduced number of comparisons as compared with Insertion Sort and 

operates by dividing the list to be sorted into subsequences and sorts these subsequences using 
Insertion Sort. The illustration below shows subsequences 4, 2 and 1 in sorting in ascending 
order of magnitude, the list: 50  34  16  8 5  3 1 0. However, any sequence can be used in as 

much as the last one is 1. 
 
First Pass 

The size of the list to be sorted is 8. Therefore, step 1 computes the first sequence s 1=8 ÷ 2 = 4. 
Therefore, numbers that are 4 distance apart are sorted as below:  
50  34  16  8 5  3 1 0 

 
 
5  34  16  8  50  3  1  0 

 
 
5  3  16  8  50  34  1  0 
 

 
5  3  1  8  50  34  16  0 
 

 
5  3  1  0  50  34  16  8 
 

Second Pass  
s2 = s1 ÷ 2 = 4 ÷ 2 = 2 
For the second pass, numbers that are 2 distance apart are sorted as follow:  

 
5  3  1 0  50  34  16 8 
 

1  3  5 0  50  34  16  8 
  
 

1  0  5 3  50  34  16  8 
  
 

1  0  5 3  50  34  16  8 
  
1  0  5 3  50  34  16  8 

 
1  0  5 3  16  34  50  8 
 

1  0  5 3  16  8  50  34 
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Third Pass  
s3 = s2 ÷ 2 = 2  ÷  2 = 1 

Numbers that are 1 distance apart are sorted as shown below.  
1   0  5 3  16   8 50  34 
  

 
After sorting each one with straight Insertion Sort we will have the following sorted list: 
0  1  3  5  8  16  34  50 

 
FIGURE 2: Illustration of Shellsort. 

 
Shellsort is presented below:  
 

procedure shellsort; 
  label 0; 
  var i, j, h, v: integer; 

  begin 
  h:=l; repeat h:=3*h+l until h>N; 
  repeat 

     h:=h div 3; 
     for i:=h+l to N do 
     begin 

        v:=a[i]; j:=i; 
        while ab-h]>v do 
            begin 

             a[j]:=ab-h]; j : = j - h ; 
if j<=h then goto 0 
end ; 

    0: ab]:=v 
    end ; 
until h= 1; 

end ; 
 
Listing 2: Shellsort [18]  

 
5.1 Increments Proposed for the Improvement of Shellsort  
Several increments have been proposed in a bid to increase the efficiency of Shellsort [5] and 

they are presented below:  
 
As cited in [19], Hibbard’s increments are 1,3,7,…, 2

k
-1 while Papernov and Stasevich proposed 

the increment of the form 2
k
+1. Others suggested are: (2

k
 – (-1)

k
/3 and (3

k
 -1)/2, Fibonacci 

numbers and the Incerpi-Sedgewick sequences for ρ =2.5 and ρ =2 and his sequence  
{1,5,19,41,109,…} in which the terms are either of the form 9.4

i
 – 9.2

i
 +1 or 4

i
 - 3.2

i
 + 1.  Knuth 

also suggested the sequence h0=1, hs+1 = 3hs + 1, which stops with ht-1 when ht+1 > N. 
Furthermore, Tokuda also suggested the sequence h0 = 1, hs+1 = 2.25hs +1 and has been 
reported to have produced better results than that of Knuth. This sequence has been 

recommended for elements of size less than 1000 [2, 20]. Out of all these increments proposed, it 
worth noticing that Sedgewick and Tokuda are the best performer depending on the size of the 
list to be sorted. (Tokuda’s sequence is better when size of the list gets  smaller while  

Sedgewick’s sequence gets more efficient as the list size increases).  
 

6. MODIFIED DIMINISHING INCREMENT SORTING (MDIS) 
Modified Diminishing Increment Sorting also partitions the items to be sorted into subsequences. 

It, however, differs from Shellsort in that it compares the first item on the list with the last and 
swaps them if they are not in order. If they are in order, they retain their positions. Next, the 
algorithm compares the second item on the list with the second to the last item. If they are not in 
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order, they are swapped, otherwise, they maintain their respective positions. This process 
continues until the last two middle items (this happens when the number of elements in the list is 

even) are compared and an appropriate action taken. If the number of items  in the list is odd, the 
process continues until the two right and left neighbours of the middle element are compared. 
This means that the middle element is not touched. The illustration is given in Figure 3 below 

when sorting the list: 51  35  17  9  6  4  2  1 in ascending order of magnitude.  
 
51  35  17  9  6  4  2  1 

 
 
 

1  35  17  9  6  4  2  51 
 
 

1  2  17  9  6  4  35 51 
  
1  2  4  9  6  17  35  51 

 
1  2  4  6  9  17  35  51 
 
FIGURE 3: Illustration of MDIS [19]. 

 

It is to be noted that this sorting algorithm is the most efficient of any known sorting algorithm for 
the worst case scenario of sorting when the element are in reverse order of what they are 
expected to be after sorting because it takes O(n) and  each of comparisons and swappings (n 

= size of the list). The algorithms is presented below:  

 
MDIS ( array, size) 
Begin 

1. i = 1 
2. j = size 
3. while( i < j) do 

 begin 
4. if  array[i] > array]j] swap( array, i, j) 
5. i =  i + 1 

6. j = j – 1 
 end 
End 

 
Listing 3: Modified Diminishing Increment Sorting [19]  
 

6.1 Improved Algorithms Based on MDIS and their Results as compared with Others  
In this section are presented algorithms that have been improved using Modified Diminishing 
Increment Sorting and the results obtained when compared with other sorting algorithms. 

 
6.1.1 Improved Shellsort 
As already mentioned, Shellsort improved the performance of Insertion Sort by decreasing the 

number of comparison needed to be made. However, Improved Shellsort is a variation of 
Shellsort that makes use of the Modified Diminishing Increment Sorting first instead of the 
Diminishing Increment Sorting as used by Shellsort, before applying Insertion Sort  on the partially 

sorted list [15]. The algorithm is presented below:  
 
improvedShellSort( array, size) 

Begin 
1. i = 1 
2. j = size 
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3. while( i < j) do 
 begin 

4. if  array[i] > array[j] swap( array, i, j) 
5. i =  i + 1 
6. j = j – 1 

 end 
[call insertion sort function to sort the array with increment =1 ] 
7.  insertsort(A, size:int) 
End 

Listing 4: Improved Shellsort [15] 

The results of the experimental comparison of this algorithm with Shellsort in the worst and best 
cases are presented below:  

 

TABLE 1: Performance Comparison of Improved Shellsort with Shellsort [15]. 

 

Clearly, as can be seen from Table 1 above, Improved Shellsort performed better that Shellsort 
as it has fewer comparisons in all cases except in the average case from list size of 50 and more.  
Table 2 below shows the performance comparisons of Improved Shellsort with Shellsort using 

Sedgewick’s and Tokuda’s Sequences. 
 

 

 
 
 

 
 
 

Number of Comparisons Carried Out 

Case  Size of 
Input 

Shellsort Improved 
Shellsort 

Worst 
-case 

10 19 5 

Best 

-case 

10 13 5 

Average 
-case 

10 19 13 

Worst 
-case 

20 55 10 

Best 

-case 

20 43 10 

Average 
-case 

20 59 50 

Worst 
-case 

50 180 25 

Best 

-case 

50 154 25 

Average 
-case 

50 254 296 

Worst 
-case 

100 456 50 

Best 

-case 

100 404 50 

Average 
-case 

100 672 1183 
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Number of Inversions Carried Out 

Size of 
Input 

Shellsort 
(Using 

Sedgewick’s 

Sequence) 

Shellsort 
(Using 

Tokuda’s 

Sequence) 

Improved 
Shellsort 

20 96 22 10 

101 1040 272 50 

500 9636 2546 250 

700 6178 3078 350 

900 6142 14830 450 

1000 5024 18248 500 

1100 5544 9058 550 

2019 33751 61123 1009 
 

TABLE 2: Performance Comparison of Improved Shellsort with Shellsort using Sedgewick’s  
and Tokuda’s Sequences [19]. 

 
It can be clearly seen from the results that Improved Shellsort outperformed both Sedgewick’s 

and Tokuda’s Sequences considering the number of inversions carried out.  
 
6.1.2  Bubble Sort 

Bubble sort passes through a list to be sorted multiple times and compares adjacent elements 
and swaps those that are out of the sorting order. Each of the passes puts the next largest value 
in its proper place. This means that it “bubbles” up a particular element to the real location where 

it is supposed to be. This is illustrated below:  
 
 

54 26 93 17 77 31 44  55 20 Exchange 

26 54 93 17 77 31 44 
 

55 20 
No 

Exchange 

26 54 93 17 77 31 44  55 20 Exchange 

26 54 17 93 77 31 44  55 20 Exchange 

26 54 17 77 93 31 44  55 20 Exchange 

26 54 17 77 31 93 44  55 20 Exchange 

26 54 17 77 31 44 93  55 20 Exchange 

26 54 17 77 31 44 55  93 20 Exchange 

26 54 17 77 31 44 55 

 

20 93 

93 in 
place 

after first 

pass 
 

FIGURE 4: Illustration of Bubble Sort [21]. 

 
6.1.2.1 Improvements on Bubble Sort 
Several improvements have been made to Bubble Sort as shown below:  
 

6.1.2.1.1 Bidirectional Bubble Sort 
This algorithm which is also referred to as Shaker Sort or Cocktail Sort sorts the list to be sorted 
in both directions in each of its passes. This makes the number of comparisons to be reduced [ 2]. 

The algorithm is just a little more difficult to implement than Bubble Sort. It is illustrated as below:  
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FIGURE 5: Illustration of Bidirectional Bubble Sort [22]. 

 
6.1.2.1.2 Batcher’s Odd and Even Merge Sort 
This algorithm divides the list to be sorted into halves. It then sorts the first left  half and the right 
half separately. Then, it sorts the elements in the even positions and the ones in the odd positions 

separately. Finally, it swaps each even position element starting from left with the odd position 
element immediately to the right. Then the list will become sorted. The algorithm behaves as 
illustrated below: 

 

 
 

FIGURE 6: Illustration of Batcher’s Odd and Even Merge Sort [21]. 

 
6.1.2.1.3 Bitonic Sort 
Bitonic Sort consists of several steps and each step is referred to as a half-cleaner. Each of these 

half-cleaners carries out comparisons and is of depth 1 in which the input line j is compared with 
line j +  for j= 1,2,… (m  is assumed to be an even integer). The half-cleaners are recursively 

combined to form a network that sorts Bitonic sequences. A Bitonic sequence is a sequence that 
increases and decreases monotonically [9]. The algorithm is shown in Figure 7 below for sorting 
the list: 8, 4, 3 and 2 in ascending order of magnitude. The algorithm uses half cleaners in steps 1 

and 2 and Bitonic in steps 3 and 4.  
 
 

8  4  3  2   Step 1 
 

 

3  2  8  4   Step 2 
 

2          3         4      8             Step 3 
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2          3         4      8             Step 4 

  
 
FIGURE 7: Illustration of Bitonic Sort [22]. 

 
6.1.2.1.4 Oyelami’s Sort 

This algorithm starts with MDIS and ends with applying Bidirectional Bubble Sort to reduce the 
number of comparisons and the swappings needed to sort the list. This is illustrated in Figure 7 
below for sorting the list: 8 4 3 2  

 
The algorithm works like this: 
8 4 3 2  

 
2 4 3 8 
 

2 3 4 8 (*) 
Bidirectional Bubble Sort is now applied to (*) to sort the elements that are adjacent as below:  
2 3  4  8 

 
 
2 3  4  8 

 
2 3  4  8 
 
FIGURE 8: Illustration of Oyelami’s Sort [22]. 

The algorithm is listed below in Listing 5. 

 
Oyelami’s Sort (array, size) 
Begin 

1. i = 1 
2. j = size 
3. while (i < j) do 

begin 
4. if array[i] > array[j] swap (array, i, j) 
5. i = i + 1 

6. j = j – 1 
end 
[Call Bidirectional Bubble Sort to sort the adjacent elements]  

7. Bidirectional Bubble Sort (A, size:int) 
End 
 

Listing 5: Oyelami’s Sort [22]  

 
6.1.2.2  Comparison of Oyelami’s Sort with Batcher’s Odd-Even and Bitonic Sorts 

The table below shows the performances of Oyelami’s Sort with Batcher’s Odd-Even and Bitonic 
sorts in the worst case scenario.  Because Batcher’s Odd -Even Sort is superior to Bidirectional 
Bubble Sort [22], Bidirectional Bubble Sort has not been compared with Oyelami’s Sort.  
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TABLE 3: Comparison of Performance of Oyelami’s Sort with Batcher’s Odd-Even  

and Bitonic Sorts [22]. 

 
From Table 3 above, it is clearly evident that Oyelami’s Sort is much more efficient than both of 
Batcher’s Odd-Even Sort and Bitonic Sort looking at the number of comparisons and swaps 

carried out. The efficiency becomes more pronounced as the size of the list increases.  
 
6.1.3  Quicksort 

Quicksort, developed by C. A. R. Horare in 1962 is an algorithm that is most suitable for average 
case sorting scenarios. This means that it is the best for lists that are partially sorted. The 
algorithm is also not difficult to implement and performs efficiently for different kinds of list and 

uses less memory resource when compared with other sorting algorithms in many scenarios [23]. 
This algorithm, which is also based on divide-and-conquer design paradigm divides the elements 
to be sorted according to their values [24]. It follows the three steps below to sort a list in 

ascending order of magnitude for instance:  
 

i. A pivot element is picked 

ii. The list is reordered such that all the elements of magnitude less than the pivot come 

before it and all the elements greater than the pivot come after it. However, equal 

elements with the pivot can go in either direction. 

iii. The sub-list of lesser elements and the sub-list of greater elements than the pivot are 

sorted recursively. 

The algorithm is presented in Listing 6 below:  

 
ALGORITHM Quicksort(A[l..r]) 
//Sorts a subarray by quicksort 

//Input: Subarray of array A[0..n − 1], defined by its left and right  indices l and r 
//Output: Subarray A[l..r] sorted in nondecreasing order 
if l < r 

s ←Partition(A[l..r]) //s is a split position 
Quicksort(A[l..s − 1]) 
Quicksort(A[s + 1..r]) 

ALGORITHM HoarePartition(A[l..r]) 
//Partitions a subarray by Hoare’s algorithm, using the first element as a pivot  
//Input: Subarray of array A[0..n − 1], defined by its left and right indices l and r (l<r) 

//Output: Partition of A[l..r], with the split position returned as this function’s value 
p←A[l] 
i ←l; j ←r + 1 

repeat 
repeat i ←i + 1 until A[i]≥ p 
repeat j ←j − 1 until A[j ]≤ p 

swap(A[i], A[j ]) 
until i ≥ j 
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swap(A[i], A[j ]) //undo last swap when i ≥ j  
swap(A[l], A[j ]) 

return j 
 
Listing 6: Quicksort [24] 

 
The algorithm’s behaviour is illustrated below:  
 

 
Start looking for the element less than 8(the pivot) from the end, end-1, …. It is found at position 
4, therefore, put the element in position 0.  

 

Start looking for the element greater than 8 from 1. It is found at position 2, therefore, we have:  

  

Copy the element[2] = 9 to the position 4 

 
Now, start looking for an element smaller than 8 from position 3. The element is found at position 

3. Therefore, it is moved to position 2:  

 

start looking for an element greater than 8 from position 3, after incrementing start by 1. But 
since start is equal to end, we stop and put the pivot in position 3 i.e  

 
 
Position 3 is returned as the value of mid and the following calls are made to the partition method 

again: 
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Quicksort(A[l..2]) 
Quicksort(A[4..r]) 

 
FIGURE 9: Illustration of Quicksort [25]. 

 
6.1.3.1 Refinements on Quicksort 
There are three improvements that have been made on Quicksort to enhance its performance 

both in the average case and the worst case scenarios as below:  
 
6.1.3.1.1 Median-of-Three Rule 

Quicksort as proposed by Horare selects the first element as the pivot. However, this is not an 
efficient partitioning in the average and worst case situations. Median-of-Three rule pick the 
median of the first, middle and the last elements in each of the sub -lists as the pivot. This 

improves efficiency in that an element closer to the middle of the sub-list is picked as compared 
to picking the first element when the list is already or partially sorted[23, 26].  
 

6.1.3.1.2 Small Sub-lists 
Quicksort’s performance for the size of a list n (n ≤ 20) is worse than Insertion Sort. When 
recursion is implemented in an algorithm, small-sized files occur often. The small sub-lists 

approach employs Insertion Sort when the size of the list is small. In addition, this approach may 
also ignore small sub-lists and apply Quicksort on the entire list first, which will result in a slightly 
unsorted list after the termination of Quicksort. The resulting list will now be sorted using Insertion 

Sort as it is efficient for nearly sorted lists. 
 
6.1.3.1.3 Introspective Sorting (Introsort)  

Introsort is a self-aware modified Quicksort that first selects a pivot element and partit ions the list 
around the chosen pivot element. It then calls itself recursively. In the process of calling itself, it 
keeps track of the number of times it has been recursively called.  Once it detects this number of 

recursive call matches the number of times needed in the average case, then it calls Heapsort. 
Introsort behaves in the average case like Quicksort, but like Heapsort in the worst case scenario 
[27].  

 
6.1.3.1.4 Improved Median-of-Three Sort for the Average Case  
This uses MDIS to first sort the list and afterwards, Median-of-Three Sort is applied. The 

performance of this algorithm with the Median-of-Three Sort, which is the best out of all the other 
three improvements made on Quicksort is presented in Table 4 below for average case 1 of the 
form where the elements not only repeat themselves, but also are decreasing e.g. 

6,6,5,5,4,4,2,2,1,1. The results in Table 5 show the performance in the average case 2 when the 
elements on the list are decreasing and also increasing with the rate of increase greater than the 
rate of decrease as in: 50, 49, 48, 47, 4, 5. 6, 7. 

 
 

 Size of Input Median-of-Three Sort Improved Median-of-Three Sort 

 Number of 
Comparisons 

Number of 
Swappings 

Number of 
Comparisons 

Number of 
Swappings 

30 31 18 24 18 

50 79 42 68 40 

100 197 100 169 97 

500 2021 997 1875 995 

1000 4943 2440 4621 2423 
 

TABLE 4: Performance of Improved Median-of-Three Sort with Median-of-Three Sort  
in the Averages Case 1 [25]. 
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Size of Input Median-of-Three Sort Improved Median-of-Three Sort 

 Number of 
Comparisons 

Number of 
Swappings 

Number of 
Comparisons 

Number of 
Swappings 

30 31 18 20 18 

50 86 48 63 46 

100 198 108 132 94 

500 1097 601 652 442 

1000 2230 1229 1312 881 
 

TABLE 5: Performance of Improved Median-of-Three Sort with Median-of-Three Sort  
in the Averages Case 2 [25]. 

 
It is clearly seen from the results in the two tables that Improved Median-of-Three Sort is more 
efficient and that the efficiency increases with the size of the list considering its reduced number 

of comparisons and swappings.  
 
6.2  Circlesort 

An attempt to further improve the efficiency of the Modified Diminishing Increment Sorting has led 
to the development of Circlesort. Circlesort intuitively applies MDIS to the whole list and then 
splits the list into two. For each of the halves, MDIS is applied recursively until each sub-list 

contains one element. Once no swaps are made in a complete circle, the list is already sorted. 
The illustration of the beahviour of the algorithm is shown below in Figure 10 below. 
 

 

FIGURE 10(A): Behaviour of Circlesort when the List Size is even [28]. 
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FIGURE 10(B): Behaviour of Circlesort when the List Size is odd [28]. 
 

The performance comparisons of Circlesort with MDIS, Shellsort, Quicksort, Int rosort and 
Heapsort when the elements of the array are sorted, unsorted randomized array through the 
application of Knuth shuffle, partially sorted array and an inverted array ar e presented in Table 6, 

Table 7, Table 8 and Table 9 respectively.  
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List 
Size 

100 1,000 10,000 100,000 

  Compares Swaps 
Total 
Operations 

  Compares Swaps 
Total 
Operations 

  Compares Swaps 
Total 
Operations 

  Compares Swaps 
Total 
Operations 

MDIS 149 0 149 MDIS 1,499 0 1,499 MDIS 14,999 0 14,999 MDIS 149,999 0 
149,999 

 
Circle 

372 0 372  
Circle 

5,052 0 5,052  
Circle 

71,712 0 71,712  
Circle 

877,968 0 
877,968 

 Shell 503 0 503  Shell 8,006 0 8,006  Shell 120,005 0 120,005  Shell 1,500,006 0 
1,500,006 

 
Quick 

480 345 825  
Quick 

7,987 4,960 12,947  
Quick 

113,631 66,421 180,052  
Quick 

1,468,946 846,100 
2,315,046 

 Intro 574 371 945  Intro 11,107 6,452 17,559  Intro 170,968 104,236 275,204  Intro 2,386,569 1,307,525 
3,694,094 

 Heap 1,081 640 1721  Heap 17,583 9,708 27,291  Heap 244,460 131,956 376,416  Heap 3,112,517 1,650,854 
4,763,371 

 
TABLE 6: Circlesort Performance Comparison for a Sorted Array [28]. 

 

 

List 
Size 

100 1,000 10,000 100,000 

  Compares Swaps 
Total 

Operations 
  Compares Swaps 

Total 

Operations 
  Compares Swaps 

Total 

Operations 
  Compares Swaps 

Total 

Operations 

Intro 581 399 980 Quick 10,815 6,585 17,400 Quick 156,257 92,747 249,004 Quick 1,933,288 1,061,619 
2,994,907 

Quick 656 496 1,152 Intro 12,342 7,097 19,439 Intro 180,411 96,470 276,881 Intro 2,585,629 1,468,727 4,054,356 

Shell 840 392 1,232 Shell 15,141 7,662 22,803 Heap 235,279 124,114 359,393 Heap 3,019,553 1,574,977 
4,594,530 

Heap 1,025 588 1,613 Heap 16,868 9,096 25,964 Shell 254,343 139,442 393,785 Shell 4,248,005 2,798,437 
7,046,442 

Circle 2,604 426 3,030 Circle 50,520 9,218 59,738 Circle 1,075,680 187,088 1,262,768 Circle 16,681,392 3,436,571 20,117,963 

MDIS 1,717 1,596 3,313 MDIS 168,568 167,330 335,898 MDIS 16,906,048 16,893,598 33,799,646 MDIS 1,664,412,460 1,664,287,655 
3,328,700,115 

 
TABLE 7: Circlesort Performance Comparison for a Randomized Unsorted Array [28]. 
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List 
Size 

100 1,000 10,000 100,000 

  Compares Swaps 
Total 

Operations 
  Compares Swaps 

Total 

Operations 
  Compares Swaps 

Total 

Operations 
  Compares Swaps 

Total 

Operations  

Intro 619 449 1,068 Quick 10,351 7,283 17,634 Intro 185,500 98,954 284,454 Intro 2,346,922 1,252,699 
3,599,621 

Quick 622 504 1,126 Intro 12,911 8,151 21,062 Heap 235,004 124,374 359,378 Quick 2,521,562 1,620,917 4,142,479 

Shell 820 359 1,179 Shell 14,416 6,800 21,216 Shell 255,156 138,892 394,048 Heap 3,022,831 1,578,856 4,601,687 

Heap 1,035 593 1,628 Heap 16,851 9,114 25,965 Quick 403,833 370,434 774,267 Shell 3,867,803 2,405,362 
6,273,165 

MDIS 1,385 1,247 2,632 Circle 50,520 8,074 58,594 Circle 1,003,968 166,534 1,170,502 Circle 15,803,424 3,110,166 18,913,590 

Circle 2,604 389 2,993 MDIS 126,926 125,568 252,494 MDIS 12,482,789 12,469,036 24,951,825 MDIS 1,253,256,005 1,253,118,536 2,506,374,541 

 

TABLE 8: Circlesort Performance Comparison for a Partially Sorted Array [28]. 

 
 

List 

Size 
100 1,000 10,000 100,000 

  Compares Swaps 
Total 

Operations 
  Compares Swaps 

Total 

Operations 
  Compares Swaps 

Total 

Operations 
  Compares Swaps 

Total 

Operations 

MDIS 149 50 199 MDIS 1,499 500 1,999 MDIS 14,999 5,000 19,999 MDIS 149,999 50,000 
199,999 

Circle 744 50 794 Circle 10,104 500 10,604 Circle 143,424 5,000 148,424 Circle 1,755,936 50,000 1,805,936 

Quick 514 399 913 Quick 8,406 5,506 13,912 Quick 117,534 72,675 190,209 Quick 1,513,481 899,854 
2,413,335 

Shell 668 260 928 Shell 11,716 4,700 16,416 Shell 172,578 62,560 235,138 Shell 2,244,585 844,560 
3,089,145 

Intro 590 394 984 Intro 11,924 7,063 18,987 Intro 183,507 95,393 278,900 Intro 2,375,618 1,217,738 3,593,356 

Heap 944 516 1460 Heap 15,965 8,316 24,281 Heap 226,682 116,696 343,378 Heap 2,926,640 1,497,434 
4,424,074 

 

TABLE 9: Circlesort Performance Comparison for an Inverted Array [28]. 
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From the results  presented in tables 6, 7, 8 and 9, the performances are as follow from the best 
to the worst: 

 
Sorted List: MDIS, Circlesort, Shellsort, Quicksort, Introsort and Heapsort  
Randomized Unsorted List: Introsort, Quicksort, Shellsort, Heapsort, Circlesort and MDIS  

Partially Sorted List: Introsort, Quicksort, Shellsort, Heapsort, MDIS and Circlesort. 
Inverted List: MDIS, Circlesort, Quicksort, Shellsort, Introsort and Heapsort.  

 
7.  DISCUSSION 
MDIS, which came as an offshoot of Diminishing Increment Sorting as proposed by Shell is the 
best and easiest algorithm to sort any list in reverse order (i.e in the worst case) and in the best 

case as it takes O(n). That is, it sorts in linear time and it is very simple to implement. It has been 
used to improve the performance of Shellsort and christened “Improved Shellsort”. Table 10 
below shows in the last column, the better performance ratio of Improved Shellsort as compared 

with Shellsort. It can be seen that the better performance of Improved Shellsort increases with the 
size of the list in the worst and best cases while its performance decreases as the size of the list 
increases in the average case. The implication of these is that Improved Shellsort is more 

efficient than Shellsort for all list sizes in the best and worst cases, while it is more efficient than 
Shellsort when the list size decreases in the average case. A close look at the last column of 
Table 10 shows that Shellsort will become more efficient than Improved Shellsort in the average 

case at a certain point as the list size increases. 
 

Case Size of 
Input 

Number of Comparisons Better Performance Ratio of 
Improved Shellsort with 

Shellsort  

    Shellsort Improved 

Shellsort 

  

Worst Case 10 19 5 3.8 

Best Case 10 13 5 2.6 

Average Case 10 19 13 1.5 

Worst Case 20 55 10 5.5 

Best Case 20 43 10 4.3 

Average Case 20 59 50 1.2 

Worst Case 50 180 25 7.2 

Best Case 50 154 25 6.2 

Average Case 50 254 296 0.9 

Worst Case 100 456 50 9.1 

Best Case 100 404 50 8.1 

Average Case 100 672 1183 0.6 

 

TABLE 10: Better Performance of Improved Shellsort as Compared with Shellsort. 

 
Improved Shellsort also performed better than all  the variants of Shellsort including the two most 
outstanding ones: Sedgewick’s and Tokuda sequences.  Table 11 below shows its better 

performance ratios as compared with the two in the last two columns. Even though [29] states 
that Sedgewick’s sequence is the best in practice and [23] reports that Tokuda’s increment 
produced better results, [19] has confirmed these assertions to be true for Tokuda’s sequence 

when the size of the list gets smaller than 900 while Sedge wick’s sequence becomes more 
efficient from this point upward as seen in tables 2 and 11. This implies that Improved Shellsort is 
recommended for both when the list size decreases and increases.  
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Size of 
Input 

Number of Inversions Carried Out Better 
Performance 

Ratio of 
Improved 

Shellsort w ith 
Shellsort 
(Using 

Sedgew ick's 
Sequence) 

Better 
Performance 

Ratio of 
Improved 

Shellsort w ith 
Shellsort 
(Using 

Tokuda's 
Sequence) 

Shellsort 

(Using 
Sedgewcik's 
Sequence) 

Shellsort (Using 

Tokuda’s Sequence) 

Proposed Algorithm 

20 96 22 10 9.6 2.2 

101 1040 272 50 20.8 5.4 

500 9636 2546 250 38.5 10.2 

700 6178 3078 350 17.7 8.8 

900 6142 14830 450 13.6 33.0 

1000 5024 18248 500 10.0 36.5 

1100 5544 9058 550 10.1 16.5 

2019 33751 61123 1009 33.4 60.6 
 

TABLE 11: Better Performance of Improved Shellsort as Compared with Shellsort. 

 
Bidirectional Bubble Sort is one of the improved algorithms based on Bubble Sort. MDIS has 
been further used to improve Bidirectional Bubble Sort to reduce the number of comparisons and 
swappings required to sort a list. The resultant improved algorithm is christened Oyelami’s Sort. 

From the results presented in Table 12 below of the comparison of Oyelami’s Sort with Batcher’s 
Odd-Even Sort and Bitonic Sort, it is evident that Batcher’s O dd-Even Sort is better in 
performance than Bitonic Sort for all sizes of the list. Oyelami’s Sort in turn also performs better 

than Batcher’s Odd-Even Sort for all sizes of the list to be sorted and the performance becomes 
better as the list size increases. This means that Oyelami’s Sort is recommended for all sizes of 
the list to be sorted, in place of Bubble sort, Bidirectional Bubble Sort, Bitonic Sort and Batcher’s 

Odd-Even Sort. 
 

  Batcher’s Odd-Even Sort Bitonic Sort Oyelami’s Sort 

Size of 

Input 

No. of 

Compa
risons 

No. of 

Swap
s 

Total 

Operatio
ns 

No. of 

Comparison
s 

No. of 

Swap
s 

Total 

Operation
s 

No. of 

Comparison
s 

No. of 

Swap
s 

Total 

Operation
s 

Better 

Performa
nce Ratio 

of 

Oyelami's 
Sort with 

Batcher's 

Odd-Even 

Sort 

4 5 4 9 6 4 10 5 2 7 1.3 

8 19 12 31 24 14 38 11 4 
15 2.1 

16 63 32 95 80 44 124 23 8 
31 3.1 

32 191 80 271 240 128 368 47 16 
63 4.3 

64 543 192 735 672 312 984 219 41 
260 2.8 

128 1471 448 1919 1792 928 2720 191 64 255 7.5 

256 3839 1024 4863 4608 2368 6976 383 128 
511 9.5 

 

TABLE 12: Better Performance of Oyelami’s Sort as Compared Batcher’s Odd-Even and Bitonic Sorts . 

 
Improved Median-of-Three Sort is an improved Quicksort that uses MDIS to improve the 
performance of Quicksort. The performance of this algorithm with the Median -of-Three Sort which 
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is the most efficient of Median-of-Three Sort, Small Sub-lists and Introspective Sort, which are all  
improved Quicksorts, shows that Improved Median-of-Three Sort is more efficient for a list 

consisting of elements that repeat themselves and are also decreasing as seen in Table 13 
below. The results also show that Improved Median-of-Three Sort’s strength becomes more 
pronounced as the size of the list reduces looking at the last column of the table. This implies that 

the algorithm is most efficient for elements in the average case that repeat themselves in a 
decreasing manner and whose size is small.  
 

  

Median-of-Three Sort Improved Median-of-Three Sort Better 

Performance 
Ratio  of 
Improved 
Median-of-

Three Sort 
with Median-
of-Three Sort 

 Size of 
Input 

Number of 
Comparisons 

Number of 
Swappings 

Total 
Operations 

Number of 
Comparisons 

Number of 
Swappings 

Total 
Operations 

  

30 31 18 49 24 18 42 1.17 

50 79 42 121 68 40 108 1.12 

100 197 100 297 169 97 266 1.12 

500 2021 997 3018 1875 995 2870 1.05 

1000 4943 2440 7383 4621 2423 7044 1.05 
 

TABLE 13: Better Performance Ratio of Improved Median-of-Three Sort as Compared with Median-of-Three 
Sort for Elements that Repeat Themselves . 

 

For the average case of non-repeating elements, Improved Median-of-Three Sort becomes more 
efficient as the list size grows as seen in the last column of Table 14. This algorithm is therefore, 
recommended for all list sizes in the average case.  
 

Size of 
Input 

Median-of-Three Sort Improved Median-of-Three Sort Better 
Performance 

Ratio of 
Improved 

Median-of-
Three Sort w ith 

Median-of-
Three Sort 

  Number of 
Comparisons 

Number of 
Swappings 

Total 
Operations 

Number of 
Comparisons 

Number of 
Swappings 

Total 
Operations 

  

30 31 18 49 20 18 38 1.29 

50 86 48 134 63 46 109 1.23 

100 198 108 306 132 94 226 1.35 

500 1097 601 1698 652 442 1094 1.55 

1000 2230 1229 3459 1312 881 2193 1.58 
 

TABLE 14: Better Performance Ratio of Improved Median-of-Three Sort as Compared with Median-of-Three 
Sort for Non-repeating Elements. 
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Circlesort is only second in efficiency to MDIS for sorted lists and inverted ones, the algorithm is 
not efficient for randomized unsorted lists and partially sorted lists. The algorithm is therefore 

recommended for sorted and inverted lists. 

 
8. CONCLUSION 
In this work it has been emphasized that MDIS is a form of diminishing increment sorting and that 
it has been used to improve the performances of some existing algorithms. These existing 
algorithms have been presented with the improved ones. The performances of the algorithms it 

has been used to improve with the improved ones are presented. In addition, the performances of 
the improved algorithms with other sorting algorithms have also been presented. Circlesort, which 
recursively applies MDIS to sort a list has also been presented with its performances with some 

existing algorithms. An attempt has also been made to recommend situations in which the 
different algorithms considered are most efficient for sorting. This will help prospective develope rs 
to determine the strengths and weaknesses of these algorithms and guide them in the choice of 

which one to use for sorting sets of data with different characteristics.  

 
9. FUTURE WORK 
Future work involves carrying out comparative performance evaluations  of MDIS and the 
algorithms it has been used to improve with other algorithms like Block Sort , Quadsort, Timsort, 

Cubesort, Trees Sort, Cycle Sort, Library Sort, Patience Sort, Smooth Sort, Strand Sort, 
Tournament Sort, Unshuffle Sort and Franceschini;s method of sorting which are not very 
prominent, but very efficient. The worst, the average and best cases performance evaluation will  

be carried out with these algorithms. 
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