BOWEN UNIVERSITY, IWO OSUN STATE COLLEGE OF AGRICULTURE, ENGINEERING AND SCIENCE INDUSTRIAL CHEMISTRY PROGRAMME 2022/2023 B.SC DEGREE SECOND SEMESTER EXAMINATION

Course Code: CHM 326 Course Title: Applied Spectroscopy Credit: 2

Date: 23/06/2023 Time allowed: 2 hours

Instructions:

(a) Answer Any four (4) questions.

(b) Answer each question on a fresh page.
EACH QUESTION CARRIES 25 MARKS.

Question 1

(a) Define the following terms in Mass Spectroscopy:

i. Metastable ion ii. Fragmentation iii. Mass spectrum 6 Marks

(b) State the uses of IR spectroscopy 6 Marks

(c). Discuss the principle of Ultraviolet Spectroscopy 8 Marks

(d) Briefly explain the difference in the infrared absorption pattern of a) H₂ and b) CO₂

5 Marks

Question 2

- (a) Briefly describe the infrared and microwave region of the electromagnetic radiation
 - 6 Marks
- (b) List and explain the three (3) major components of a UV/Visible Spectrophotometer.
 - 6 Marks
- (c). Using UV spectroscopy only, differentiate between the following pairs
- 8 Marks

and

Ci

Cii

and

Ciii

Civ

CH=CHC₂H₅

(d) Explain anisotropic effect as a term that influences the chemical shift of a compound

5 Marks

Question 3

(a) A compound burns with luminous sooty flame has Infrared absorption at 3600, 3000, 1640 cm⁻¹ and reacts with B V_{max} at 1899 and 1760cm⁻¹. The products are C 1765 and 1640cm⁻¹ and D 3250 – 2500cm⁻¹ and 1700cm⁻¹

i. Write the functional groups of A, B C and D

8 Marks

ii. Write the equation for the reaction.

2 Marks

(b) Describe in detail the Infrared spectra characteristics of

ii

8 Marks

(c) Predict structures justifiable for the compound C7H14O with the following

m/e ratios: 29, 57, 72, 85, 114

7 Marks -

Question 4

i

(a) Predict structures for the following:

i C₅H₁₀O₂ (3H T 1.1, 2H Q 2.1, 2H Q 4.1, 3H T 1.3)

ii C₅H₈O₂ (2H Q 4.1, 3H T 1.3, 2H D 6.2, 1H T 5.8)

iii. C₄H₈O (3H S 2.1, 2H Q 2.4, 3H T 1.2

6 Marks

(b) i Explain Beer-Lambert law as related to absorption spectroscopy ii Write short notes on the following: 2 Marks

Electron coupled spin-spin splitting

2 Marks

Chemical Shift

2 Marks

(c). Propose a structure for a ketone with the following m/e ratios

27 35%) 28 (10%) 29 (70%) 41 (22%) 57 (100%) 72 (20%) 85 (22%) 114 (100%) 8 Marks

(d). Justify the statement "Only those vibrations that result in a rhythmical change in the dipole moment of the molecule are observed in the infrared region"

5 Marks

Ouestion 5

(a) When acetone is treated with a base, a higher boiling liquid bpt 130°C can be isolated from the reaction mixture. The spectrum properties of this liquid are

IR: 1620cm⁻¹ 1695cm⁻¹

NMR: 1.9 (3H S) 2.1 (6H, S) 6.15 (1H S)

 $UV \lambda_{max} = 11,700$

MS: m/z 55 (100) 83 (90) 43 (78) 98 (49) 29 (46) 39 (43) 27 (42) 53 (13) 41 (18) 28 (18)

Deduce the structure of the liquid based on the above spectra properties!

10 Marks

(b) Septan-3-one CH₃CH₂COCH₂CH₂CH₂CH₃ showed the following peaks in MS

m/_e 27 28 29 41 57 72 85 114

R.A (%) 35 10 70 22 100 20 22 10

Justify all ^m/_e. 4 Marks

(c) From Spectra A, Justify and Identify all vibrational frequencies and their associated compounds

6 Marks

(d) How does bond strength affect vibrational frequencies of a compound? 5 Marks

Spectra A