BOWEN UNIVERSITY, IWO, OSUN STATE

COLLEGE OF AGRICULTURE, ENGINEERING AND SCIENCE

INDUSTRIAL CHEMISTRY PROGRAMME

2022/2023 B.SC DEGREE SECOND SEMESTER EXAMINATION

Courses Title: Introductory Quantum Chemistry and Atomic & Molecular Structure

Date: 27/06/2023 Course Code: CHM 310 Credit: 3 Time Allowed: 3hrs

INSTRUCTIONS (a) Answer FOUR

Answer FOUR questions in all

(c) Answer TWO questions from EACH section

USEFUL PHYSICAL CONSTANTS

Gas constant, R = $8.314 \text{Jmol}^{-1} \text{K}^{-1}$

Velocity of light, c = $2.99793 \times 10^8 \text{ms}^{-1} = 2.99793 \times 10^{10} \text{cms}^{-1}$

1 Newton = 10^3 g.ms⁻²

Planck's constant, h = $6.626 \times 10^{-34} \text{ J.s}$

Avogadro's number. N_A = $6.023 \times 10^{23} \text{ mol}^{-1}$

Atomic mass of carbon, C = 12.011amu

1 atomic mass unit = $1.66 \times 10^{-27} \text{kg}$

Atomic mass of hydrogen = 1.007825 amu

Atomic mass of carbon = 12.01 amu

Atomic mass of oxygen = 15.999 amu

SECTION A

QUESTION ONE (25 MARKS)

- a. Highlight any two (2) advance methods involved in treating molecules based on principle of wave mechanics.

 4 Marks
- b. Discuss in details the methods mentioned in 1a above. 5 Marks

- c. Calculate the dipole moment for HCl given the following data, $r_H = (124.0,0,0) r_{Cl} (-3.5,0,0) r_{Cl} (-3.5,0,0)$
- 0), $q_H = 2.70 \text{ X } 10^{-20} \text{ C}$ and $q_{Cl} = 2.70 \text{ X } 10^{-20} \text{C}$.

10 Marks

(ii) Do you expect the transition moment to be equal to zero? Give reason for your answer

6 Marks

QUESTION TWO (25 MARKS)

- a. Under symmetry conditions, what are the point groups that are associated with the production of pure rotational spectra?5 Marks
- b. Derive an expression for the classical and quantum rotational energy of a spherical top molecule.

9 Mark

c. Given the following data for hydrogen atom, show that hydrogen molecule cannot exhibit transition upon interaction with electromagnetic radiation. $r_H = (124.0,0,0)$, $q_H = 2.70 \times 10^{-20}$ C.

6 Marks

d. What are the shortcomings of rotational and vibrational spectroscopy over electronic spectroscopy?

5 Marks

QUESTION THREE (25 MARKS)

- a. Given that N_1 represents the population of the first level, i.e. level 1 and A_{12} is the Einstein coefficient of spontaneous emission, show that N_1 has an exponential relationship with A_{12}
 - 4 Marks
- b. State at least one example of spectroscopic techniques that employs transition in vibrational,
 rotational and Electronic transition.
- c. Based on electric dipole moment, differentiate between allowed and forbidden transition
 - 6 Marks
- d(i). Write an expression that defines molecular transition moment.
- 5 Marks
- (ii). Hence what are the factors that influence molecular transition moment. 5 Marks

SECTION B

		ON FOUR (25 MARKS) Define the following:	
	а. _L i.	Wavefunction	
	ii.	Operator	
	iii.	Hamiltonian operator	
	iv.	Eigen value	
,	٧.	Fermion	
•	vi.	Boson	12 marks
ŧ		that do $ \psi ^2$ and $ \psi ^2$ dx represent in the Born interpretation of the wavefunction?	4 marks
c	. If	the wavefunction of a particle has the value ψ at some point r, what is the probability	bility of finding
	th	e particle in an infinitesimal volume dV = dxdydz at that point?	2 marks
d	i. Ti	he probability density corresponding to the (real) wavefunction ψ_+ is given by	
	Ψ	$P_{+}^{2} = N^{2}(A^{2} + B^{2} + 2AB)$. What is the total probability density proportional to?	7 marks
OUF	STIC	ON FIVE (25 MARKS)	
QUL	a.	Explain the importance of Pauli Exclusion Principle to half-integer spin?	4 marks
	b.	Briefly explain singlet and triplet states.	6 marks
φ'	c.	Enumerate the three types of molecules that possess a center of inversion	
		(centrosymmetric molecules).	3 marks
	d.	Write the ground-state configuration for helium and nitrogen molecules	2 marks
	e.	Draw the energy diagrams for helium and nitrogen molecules	4 marks
	f.	Calculate the bond orders of the molecules in question 5e.	2 marks
	g.	Given that the speed of a particle of mass 4.0 g is 3μ ms ⁻¹ . Calculate the	
	8.	minimum uncertainty in the position.	4 marks
QUES	STIC	N SIX (25 MARKS)	
	a.	Briefly explain Walsh' rule?	3 marks
	b.	What are the applications of Walsh diagram?	4 marks
	c.	Briefly explain the following:	
		i. Spin –spin coupling	4 marks
		ii. Orbit- orbit coupling	4 marks
w		iii. Spin –orbit coupling	4 marks
	d.	What are the postulates of quantum mechanics?	6 marks