

BOWEN UNIVERSITY, IWO, OSUN
COLLEGE OF AGRICULTURE, ENGINEERING & SCIENCES (COAES)
DEPARTMENT OF ELECTRICAL/ELECTRONICS ENGINEERING
B. ENG. ELECTRICAL/ELECTRONICS ENGINEERING
2022/2023 SECOND SEMESTER EXAMINATIONS

COURSE ODE: EEE 206 COURSE TITLE: ELECTRICAL ENGINEERING

MATERIALS

COURSE UNIT: 2 TIME: 2 HOURS

INSTRUCTION(S): INSTRUCTIONS: ANSWER QUESTION ONE (1) AND ANY OTHER THREE

QUESTIONS

QUESTION ONE

a.	Discuss the followin	with regards to electric	al engineering materials
----	----------------------	--------------------------	--------------------------

i.	Mechanism of strengthening metals	4 Marks
ii.	Electrical characteristics of alloys used for commercial purposes	4 Marks
iii.	Electrical resistivity of metals	4 Marks

b. The resistivity of pure copper is 1.56 micro-Ohm-cm. An alloy of copper containing 2 atomic percent nickel has a resistivity of 4.06 micro-Ohm-cm. An alloy of copper, containing 1 atomic percent silver, has a resistivity of 1.7 micro-Ohm-cm. Find the resistivity of a copper alloy containing 1 atomic percent nickel and 3 atomic percent silver
 4 Marks

c. Discuss the electron principle according to Bohr and wave mechanical model. 6 Marks

QUESTION TWO

a. In a tabular form draw a comparison between conductor, semi-conductor and insulator

6 Marks

b. Explain five classifications of bonds in solid material.

5 Marks

c. Discuss the term transducer and give two examples.

5 marks

QUESTION THREE

a.	(i)	Discuss the term piezoelectricity	2 Marks
	at well		

(ii) List four areas of application 4 Marks

(i) Explain the term semi-conductors, and 2 Marks

(ii) distinguish between intrinsic and extrinsic semi conducting materials6 Marks(iii) Using a neat diagram illustrate the fundamental concept of an atom2 Marks

	그 사람들은 그는	
a.	Explain three dielectric related phenomena	3 Marks

QUESTION FOUR

b. Write short notes on the following terms

b.

31101	thotes on the following terms	
i.	Polarizations	2 Marks
ii.	dielectric material	2 Marks
iii.	electron mobility	2 Marks
iv.	electrical conductivity	2 Marks

c. Calculate the resistance of an aluminium wire 100 m long and having cross-sectional area of 3 sq. mm at 20°C. Given, the resistivity of Al at 20° C = 2. $2.66 \times 10^{-8} \Omega$ m 5 Marks

QUESTION FIVE

- a. The density of nickel is $8.9 \times 10^3 \, kg/m^3$. Avogadro's number $N_A = 6.023 \times 10^{23} \, atom/mol$. atomic weight of Ni is $58.71 \, gm/mol$. Calculate
 - (i) the saturation magnetization

4 Marks

(ii) the saturation flux density

4 Marks

b. State the properties and examples of the following material classification: metals, ceramics and polymers
 8 Marks

QUESTION SIX

a. Explain dielectric materials

4 Marks

- With the aid of suitable diagram illustrate the schematic representation of hysteresis curve for a ferroelectric material and explain the B-H processes involved
 8 Marks
- c. Calculate the resistance of an aluminium wire 100 m long and having cross-sectional area of 3 sq mm at 20 °C. 4 Marks