

BOWEN UNIVERSITY, IWO, OSUN COLLEGE OF AGRICULTURE, ENGINEERING & SCIENCES (COAES) DEPARTMENT OF ELECTRICAL AND ELECTRONICS **ENGINEERING**

2022/2023 SECOND SEMESTER EXAMINATIONS

COURSE CODE:

EEE 202

COURSE

ENGINEERING MATHEMATICS II

TITLE:

COURSE UNIT: INSTRUCTION(S):

TIME: 3 HOURS

ANSWER FIVE QUESTIONS IN ALL WITH AT LEAST TWO QUESTIONS

FROM EACH SECTION

SECTION A

QUESTION ONE:

a. Find the solutions to the following differential equations:

 $\frac{d^2y}{dx^2} + 10\frac{dy}{dx} + 25y = 0$

(4 marks)

 $2\frac{d^2y}{dx^2} + 5\frac{dy}{dx} + 6y = 0$ ii.

(4 marks)

 $\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 9y = 0$

(4 marks)

b. The following are solutions to certain differential equations. Formulate the corresponding differential equations.

 $y = Ae^{-2x} + Be^{3x}$

(4 marks)

 $y = e^{-2x}(A + Bx)$ ii.

(4 marks)

QUESTION TWO:

Find the solution to the following second order differential equation when the boundary conditions are x = 0, $y = \frac{3}{4}$ and x = 0, $\frac{dy}{dx} = \frac{5}{2}$

$$\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = 2\sin 4x$$

(20 marks)

QUESTION THREE:

a. Evaluate $\oint_C y dx$ when C is the circle $x^2 + y^2 = 4$

(12 marks)

b. Find the area enclosed by a triangle with vertices (0,0), (5,3) and (2,6). Take all dimensions in (8 marks) meter.

OUESTION FOUR:

a. Find the area of the plane figure bounded by the curves

 $y_1 = (x-1)^2$ and $y_2 = 4 - (x-3)^2$. Take all dimensions in meter. (12 marks) b. Determine $V = \int_1^4 \int_2^5 \int_0^{x+y} dz \, dy \, dx$ (8 marks)

SECTION B

QUESTION FIVE

a.	(i) What is an analytical function?	2 Marks
	(ii) Determine if the function $f(z) = \frac{(z+1)}{(z-1)}$ is analytical?	5 Marks
b.	If $ z^2 - 1 = z ^2 + 1$, show that z is completely imaginary?	5 Marks
c.	What are the conditions for $f(z)$ to be differentiable?	3 Marks
d.	Find the first derivative of the function $f(z) = x^2 - y^2 + i2xy$	5 Marks
QUESTION SIX		
a.	In each of the following cases, write $f(z)$ in the form $u(x, y)$ where $z = x + iy$ and u, v are real-valued functions.	
	$i. f(z) = z^2 4 Mark$	CS .
	ii. $f(z) = \frac{1}{z}$ $(z \neq 0)$ 4 Mark	S
b	Show that u and v satisfy the Cauchy-Riemann equations everywhere for (i) and for all $z \neq 0$ in (ii) above 4 Marks	
c.	Write the function $f(z) = z $ in the form $u(x, y) + iv(x, y)$. Using Cauchy-Riem equations, decide whether there are any points in C which is differentiable.	nann Marks
	QUESTION SEVEN	
a.	i. Express $z = (-\sqrt{3} - i1)$ in polar form and sketch on z-plane ii. Explain four properties of complex numbers with an aid of an example each.	4 Marks
	ii. Explain four properties of complex numbers with all aid of an example each.	4 Marks
b.	i. Find and sketch the image of $ z-2 < 1$ under the mapping of $w = \frac{2}{z-1}$.	4 Marks
	ii. Find the modulus and conjugate of the following functions.	234.1
	i. z = 11 + 27i	2 Marks
	ii. z = -6 - 12i	2 Marks
c.	Given that $z_1 = 2 - i6$ and $z_2 = 5 + i8$ Determine the	2 Marks
	I. Additive property II. Multiplicative property	2 Marks
	ii. Widiliphomive property	