BOWEN UNIVERSITY, IWO. OSUN STATE. NIGERIA COLLEGE OF AGRICULTURE, ENGINEERING, AND SCIENCE PHYSICS PROGRAMME

SECOND SEMESTER EXAMINATION, 2022/2023 SESSION

	202: INTRODUCTION TO ELECTRIC FIELDS AN		(3 CREDITS)	
	: THURSDAY, 22 ND JUNE, 2023	TIME: 3:30 P.M – 6:3		
	RUCTION: Attempt Any Four Questions	(Each question carries		
••••••		••••••••••	••••••	
	Use the following constants where applicable.			
	Boltzman constant = 1.38 x 10 ⁻²³ J/K	charge on an electron	$e = 1.6 \times 10^{-19} \text{ C}$	
	1u (atomic mass unit) = $1.66 \times 10^{-27} \text{ kg}$, $1 \text{ eV} = 1.602 \times 10^{-1} \text{ kg}$		9	
	rest mass of proton = 1.007276u,	rest mass of electron :	est mass of electron = 1.008665u	
	rest energy equivalent (1u) = 931.494 MeV/u,	mass of electron Me =	$= 9.1 \times 10^{-31} \text{ kg}$	
		• • • • • • • • • • • • • • • • • • • •	••••	
QUE:	STION 1			
A.	(i) Explain the term "impedance" in alternate curre		(5 marks)	
	(ii) Discuss briefly how the magnitude of impedan-	ce is calculated using of	complex	
	numbers.		(5 marks)	
В.	Explain the term resonance in alternate current (a.c	c) circuits.	(9 marks)	
C.	Determine the impedance of a circuit that has a res	sistance of 100 ohms ar	nd a	
	capacitance of 10 microfarads at a frequency of 10	0 Hz in complex notat	ion.	
			(6 marks)	
o vin				
	STION 2			
A.	(i) What is an inductor?		(4 marks)	
	(ii) Explain the concept of inductance of an induct	or.	(5 marks)	
В.	Write short notes on the following:			
	(i) Self inductance; and		(4 marks)	
	(ii) Mutual inductance.		(4 marks)	
C.	(i) Discuss briefly, the time constants of an induct	or.	(3 marks)	
	(ii) Determine the inductance of a coil with 500 turns and an average radius			
	of 5.0 cm if it has a length of 20 cm and a permea	ability of $4\pi \times 10^{-7}$ H/m	? (5 marks)	
OHE	ESTION 3			
A.	(i) Define the term 'capacitance' of a capacitor.		(3 marks)	
71.	(ii) What is capacitive reactance?		(3 marks)	
В.	(i) How do you determine the value of a parallel	nlate capacitor?	(2 marks)	
Ъ.	(ii) Give four (4) applications of capacitors.	piaco oupuottoi:	(8 marks)	
	(ii) Give rour (4) applications of capacitors.		(0)	

Sollow

C.

Three capacitors C_1 = 0.1 μF , C_2 = 0.2 μF and C_3 = 0.3 μF are connected in series across a 12 volts battery source. Determine

(i) the current flowing through each of the capacitor,	(2 marks)	
(ii) the voltage across each capacitor and	(5 marks)	
(iii) the total current flowing through the circuit	(2 marks)	

QUESTION 4

A.	(i) What are electronic oscillators?	(6 marks)
	(ii) Differentiate between sinusoidal oscillators and relaxation oscillators	(2 marks)
B.	(i) Write a short note on oscillator circuit	(5 marks)
	(ii) Mention three applications of oscillators in electronics.	(6 marks)
C.	Determine the frequency of an (inductor-capacitor) L.C oscillator,	
	if the inductance is 45H and capacitance is 16 uF	(6 marks)

QUESTION 5

A. Consider figure 'x' below. Find I₁, I₂, I₃, I₄ and I₅ and charge Q on the capacitor

	Figure x	(10 marks)
B.	State the two Kirchhoff's rules. (write them out also mathematically)	(6 marks)
C.	(i) Write short note on 'Q'-factor of an electronic system.	(5 marks)
	(ii) Define the term potential difference	(2 marks)
	(iii) When does a potential difference becomes absolute?	(2 marks)

ollow