BOWEN UNIVERSITY, IWO, OSUN STATE NIGERIA COLLEGE OF AGRICULTURE ENEGINEERING AND SCIENCE PHYSICS PROGRAMME

2022/2023 SECOND SEMESTER

PHY 214

CLASSICAL MECHANICS II

(2 CREDITS)

DATE: 19th June, 2023

TIME: 2hrs

INSTRUCTION: ATTEMPT THREE QUESTIONS. QUESTION 1 IS COMPULSORY

Plank's constant	h	6.6 x 10 ⁻³⁴ J.s
Stefan-Boltzman constant	σ	5.67 x 10 ⁻⁸ Watts.m ⁻² K ⁻⁴
Wien's displacement constant	b	2.898×10^{-3} m.k
Speed of light	c	3.00 x 10 ⁸ ms ⁻¹ 9.11 x 10 ⁻³¹ Kg 1.649 x 10 ⁻²⁷ Kg 1093700 m ⁻¹ 1.6 x 10 ⁻¹⁹ J
Electron rest mass	m_e	
Neutron rest mass	m_n	
Rydberg constant	R	
leV	e	
Gravitational Constant	G	$6.67 \times 10^{-11} \mathrm{m}^3\mathrm{kg}^{-1}\mathrm{s}^{-2}$
Latent heat of vaporization	$L_{\rm v}$	2256 kJkg ⁻¹
Latent heat of fusion of water	L_{fw}	338 kJkg ⁻¹
STP		1.01 X 10 ⁵ Pa
Velocity of sound in air		330 ms ⁻¹
Density of water	ρ	$1 \times 10^3 \text{ kg/m}^3$
Permittivity of free space	ε	$8.8542 \times 10^{-12} C^2 / N.7$

1. (a) Consider a charge 'q' moving with velocity 'v' in a uniform magnetic field 'B'. If the charge moves perpendicular to the field, show that the frequency f of the rotation of the charge in the magnetic field is

$$f = \frac{qB}{2\pi m_e}$$

where all symbols have their usual meaning.

(15 marks)

(b) An electron that has velocity $\vec{V} = (2.5 \times 10^6 \, m/s)i + (3.5 \times 10^6 \, m/s)j$ moves through a magnetic field $\vec{B} = (0.030T)i - (0.15T)j$. Find the magnitude of the force on the electron. (5 n

(5 marks)

2. (a) State the Coulomb's law of Electrostatic Force

(5 marks)

(b) Three charges lie along the x-axis, the positive charge $q_1 = 15\mu C$ is at x = 2.0 m, and the positive charge $q_2 = 6.0\mu C$ is at the origin. Where must a negative charge q_3 be placed on the x - axis so that the resultant electric force on it is zero.? (15 marks)

- 3. (a) List four (4) properties of electromagnetic waves (4 marks)
 - (b) Aluminized Mylar film is a highly reflective, lightweight material that could be used to make sails for spacecraft driven by the light of the Sun. Suppose a sail with area $1.00 \ km^2$ is orbiting the sun at a distance of $1.5 \times 10^{11} m$. The sail has mass of $5.00 \times 10^3 kg$ and is tethered to a payload of mass $2.00 \times 10^4 kg$.
 - (i) If the intensity of sunlight is $1.34 \times 10^3 W$ and the sail is oriented perpendicular to the incident light, what radial force is exerted on the sail? (5 marks)
 - (ii) About how long would it take to change the radial speed of the sail by $1.00 \ km/s$? (5 marks)
 - (iii) Calculate the peak electric and magnetic fields of the laser light. (6 marks)
- 4. (a) With the aid of a well labeled diagram, explain a geometric construction that describe Young's double slit experiment. (10 marks)
 - (b) A screen is separated from a double-slit source by 1.20 m. The distance between the two slits is 0.0300 mm. The second-order bright fringe (m = 2) is measured to be 4.50 cm from the centerline. Determine;
 - (i) the wavelength of the light and, (5 marks)
 - (ii) the distance between adjacent bright fringes. (5 marks)