BOWEN UNIVERSITY, IWO. OSUN STATE. NIGERIA COLLEGE OF AGRICULTURE, ENGINEERING, AND SCIENCE PHYSICS PROGRAMME

SECOND SEMESTER EXAMINATION 2022/2023 SESSION

PHY 241: HEAT, ATOMIC AND NUCLEAR PHYSICS

CREDITS: 2C

DATE: WEDNESDAY 21st JUNE, 2023

TIME: 4.00 P.M. - 6. 00P.M.

INSTRUCTION: ANSWER ONLY THREE QUESTIONS

la.	(i) Define the following:(a)Zeroth law of Thermodynamics;(b)Second Law of Thermodynamics;	2Mrks 2Mrks	
	(ii) Explain the following as related to thermodynamics		
	(a) Open System;	2Mrks	
	(b) Closed system; and	2Mrks	
	(c) Isolated System.	2Mrks	
b.	(i) Using a suitable diagram describe the following thermodynamic process		
U.	(a) Adiabatic; and	7Mrks	
	(b) Isothermal.	7Mrks	
	(ii) Show that the relation between P and V for an ideal gas going through an a	adiabatic in	
	which the gas does work is given as $PV^{\gamma} = constant$. Where $\gamma = molar$ capacity ratio $\left(\frac{C_P}{C_V}\right)$, P and V have their usual meaning.	$9^{1/2}$ Mrks	
2a.	(i) What do you understand by the following:		
	(a) Heat transfer	2Mrks	
	(b) Heat Engine	2Mrsk	
	(c) Heat Pump	2Mrks	
	(ii) Explain the following as related to heat transfer and give two examples of	each:	
	(a) Conduction;	6Mrks	
	(b) Convection; and	6Mrks	
	(c) Radiation.	6Mrks	
b.	(i) Explain the term black body and State Lord Kelvin's Postulate as related t	o the second	
	law of thermodynamics	5Mrks	
	(ii) What is the amount of heat transfer between two water columns of different	ent temperatures	
	(40°C and 20°C) separated by a glass wall with an area of 1m by 2m and	a thickness of	
	0.003m, given that the thermal conductivity of the glass is 1.4 W/mK?	$4^{1/2}$ Mrks	

2

3a.	 (i) What is thermodynamic equilibrium? (ii) Briefly explain the following as related to thermodynamic equilibrium (a) Mechanical Equilibrium; (b) Chemical Equilibrium; and (c) Thermal Equilibrium. 	2 ¹ / ₂ Mrks 4Mrks 4Mrks 4Mrks	
b.	(i) Using a situation diagram, describe a Carnot cycle.(ii) Determine the efficiency of a Carnot engine with a hot reservoir of 250 deg Celsius and a cold reservoir of 35 degrees Celsius?	12Mrks rees 7Mrks	
4a.	 (i) Explain the following: (a) Compton Effect and (b) Photoelectric Effect (ii) Derive the expression for Compton Effect 	5Mrks 5Mrks 10Mrks	
b.	 (i) Give two differences in the properties of hadrons and the Lepton particles (ii) In a photoelectric effect experiment the threshold wavelength of light is 380 the wavelength of incident light is 260 nm, the maximum kinetic energy of electrons will be given E (in eV) 		