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Abstract

In this paper, sufficient conditions are established for uniform asymptotic stability of
the trivial solutions, uniform boundedness, uniform ultimate boundedness and asymptotic
behaviour of solutions of some third order nonlinear neutral delay differential equations.
We employ Lyapunov’s direct method by constructing a complete Lyapunov functional
to obtain the results. Recent results on third order nonlinear delay differential equations
are particular cases of our results.
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1 Introduction

The difficulties in obtaining analytical solutions of nonlinear differential equa-
tions resulting from mathematical models prompted researchers in the determi-
nation of the qualitative behaviour of solutions. Methods, such as Lyapunov’s
direct method, frequency domain approach, comparison theorems, adaptive
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methods, canonical transformation, solutions representations, the well known
Cauchy formula, to mention few have been developed to obtain information on
the qualitative behaviour of solutions of differential equations in the literature
when there is no analytical expression for solutions.

Till now with respect to our observation in the relevant literature, the most
effective method to determine qualitative behaviour of solutions of differential
equations is still the Lyapunov’s direct method, see for instance: Burton et
al [12] - [15], Driver [17], Hale [21], [22], Reissig et al [28], Rouch et al [29]
and Yoshizawa [45, 46] which contain the general results on the subject matter.
Other notable authors include Ademola et al [2, 1, 3, 4, 5, 7, 8], Chukwu [16],
Ezeilo [18, 19, 20], Hara [23], Ogundare [24], Omeike [25, 26], Swick [31, 32],
Bereketoglu, H. and Karakoc, F. [11], Tejumola [33], Tunç [35, 38, 41], Ya-
mamoto [43] on ordinary differential equations. Ademola and Arawomo [6],
Afuwape and Omeike [9, 10], Omeike [27], Sadek [30], Tejumola [34], Tunç
[36, 37, 39, 40, 42], Yao and Wang [44] and Zhu [47] on functional or delay
differential equations.
For over four decades many authors have dealt with delay differential equations
and obtained many interesting results as stated above. In 2010, in particular,
Yao and Wang [44] discussed conditions for global asymptotic stability of the
third order nonlinear delay differential equation

...
x + ϕ(ẍ) + g(ẋ(t− r(t))) + f(x(t− r(t))) = 0.

Moreover, Afuwape and Omeike [10], and Omeike [27] established criteria for
stability and boundedness of solutions of the following third order delay differ-
ential equations

...
x + a(t)ẍ+ b(t)ẋ+ c(t)f(x(t− r(t))) = 0

and

...
x +h(ẋ)ẍ+ g(ẋ(t− r(t))) + f(x(t− r(t))) = p(t, x, ẋ, x(t− r(t)), ẋ(t− r(t)), ẍ).

Finally, Tunç [42] studied conditions for stability and boundedness of solutions
for the non autonomous differential equation

...
x + a(t)ẍ+ b(t)g1(ẋ(t− r(t))) + g2(ẋ) + h(x(t− r(t)))

= p(t, x, ẋ, x(t− r(t)), ẋ(t− r(t)), ẍ).

However, the problem of uniform asymptotic stability of the trivial solution,
uniform boundedness, uniform ultimate boundedness and asymptotic behaviour
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of solutions of delay differential equations, in general, and those of third order,
in particular, is not still solved for more general nonlinearity. Using a complete
Lyapunov functional, the purpose of this paper therefore is to obtain conditions
for uniform asymptotic stability of the zero solution, uniform boundedness,
uniform ultimate boundedness and asymptotic behaviour of solutions of the
third order nonlinear non autonomous neutral delay differential equation

...
x+f(x(t− r(t)), ẋ(t− r(t)))ẍ+ g(x(t− r(t)), ẋ(t− r(t)))

+ h(x(t− r(t))) = p(t, x, ẋ, x(t− r(t)), ẋ(t− r(t)), ẍ)
(1.1)

or its equivalent system derived by setting ẋ = y ẍ = z i.e.

ẋ = y, ẏ = z, ż = p(t, x, y, x(t− r(t)), y(t− r(t)), z)− f(x, y)z

− g(x, y)− h(x) +

∫ t

t−r(t)

fx(x(s), y(s))y(s)z(t)ds

+

∫ t

t−r(t)

fy(x(s), y(s))z(s)z(t)ds+

∫ t

t−r(t)

gx(x(s), y(s))y(s)ds

+

∫ t

t−r(t)

gy(x(s), y(s))z(s)ds+

∫ t

t−r(t)

h′(x(s))y(s)ds,

(1.2)

where 0 ≤ r(t) ≤ γ, γ > 0 is a constant which will be determined later, the
functions f, g, h and p are continuous in their respective arguments and the
derivatives fx(x, y), fy(x, y), gx(x, y), gy(x, y), h′(x) exist and are continuous
for all x, y, z with h(0) = g(0, 0) = g(x, 0) = 0. The dots as usual stands for
differentiation with respect to the independent variable t. Also, conditions for
existence and uniqueness of solutions of (1.2) are assumed. The results obtained
in this investigation improve and extend the existing results on the third order
nonlinear delay differential equations in the literature.

2 Preliminaries

Consider the general autonomous delay differential system

Ẋ = F (Xt), Xt(θ) = X(t+ θ), −r ≤ θ ≤ 0. t ≥ 0 (2.1)

where F : CH → Rn is a continuous mapping , F (0) = 0, we suppose that F
takes closed bounded set of Rn. Here (C, ‖·‖) is the Banach space of continuous
function φ : [−r, 0] → Rn with supremum norm, r > 0, CH is an open ball of
radius H in C;

CH := {φ ∈ C([−r, 0],Rn) : ‖φ‖ < H}.
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It has been shown by Burton [15], that if φ ∈ CH , and t ≥ 0, then there is
at least one continuous solution X(t, t0, φ) satisfying (2.1) for t > t0 on the
interval [t0, t0 +α), such that Xt(t, φ) = φ and α is a positive constant. If there
is a closed subset B ⊂ CH such that the solution remain in B, then α =∞.

Definition 1 A continuous function W : R+ → R+ with W (0) = 0, W (s) > 0
if s 6= 0, and W strictly increasing is a wedge. (We denote wedges by W or Wi,
where i is an integer).

Definition 2 The zero solution of (2.1) is asymptotically stable if it is stable
and if for each t0 ≥ 0 there is an η > 0 such that ‖φ‖ ≤ η implies that

X(t, t0, φ)→ 0 as t→∞.

Definition 3 An element ψ ∈ CH is in the ω−limit set of φ, say Ω(φ), if
X(t, 0, φ) is defined on R+ and there is a sequence {tn}, tn →∞ as n→ +∞,
with ‖Xtn(φ) − ψ‖ → 0 as n → ∞, where Xtn(φ) = X(tn + θ, 0, φ) for −r ≤
θ < 0.

Definition 4 A set Q ⊂ CH is an invariant set if for any φ ∈ Q, the solution
X(t, 0, φ) of (2.1) is defined on R+ and Xt(φ) ∈ Q for t ∈ R+.

Next, consider the system

Ẋ = F (t,Xt), Xt = X(t+ θ), −r ≤ θ ≤ 0, t ≥ 0, (2.2)

Where F : [0,∞)×C → Rn is continuous and takes bounded sets into bounded
sets.

Definition 5 Let V (t, φ) be a continuous functional defined for t ∈ R+, φ ∈
CH . The derivative of this functional V along a solution of (2.2) is defined by
the following relation

V̇(2.2)(t, φ) = lim sup
h→0

V (t+ h, xt+h(t0, φ))− V (t, xt(t0, φ))

h

where x(t0, φ) is the solution of (2.2) with xt0(t0, φ) = φ.

Lemma 2.1 [15, 22, 47] If φ ∈ CH is such that the solution xt(φ) of (2.1) with
x0(φ) = φ is defined on R+ and ‖Xt(φ)‖ ≤ H1 < H for t ∈ R+, then Ω(φ) is
nonempty, compact, invariant set, and

dist(Xt(φ),Ω(φ))→ 0, as t→∞.

Electronic Journal. http://www.math.spbu.ru/diffjournal 46



Differential Equations and Control Processes, N 4, 2013

Lemma 2.2 [14, 47] Let V (φ) : CH → R be a continuous functional satisfying
a local Lipschitz condition. V (0) = 0 and such that

(i) W (|φ(0)|) ≤ V (φ) ≤ W2(‖φ‖) where W1(r) and W2(r) are wedges;

(ii) V̇(2.1)(φ) ≤ 0 for φ ∈ CH ,

then the zero solution of (2.1) is uniformly stable.
If we define Z = {φ ∈ CH : V̇(2.1)(φ) = 0}, then Xt = 0 of (2.1) is asymptotically
stable, provided that the largest invariant set in Z is M = {0}.

Lemma 2.3 [45] Let V (φ) be a continuous Liapunov functional on CH and
let Ul denote the region such that V (φ) < l. Suppose that V (φ) ≥ 0 and
V̇(2.1)(φ) ≤ 0 for all φ ∈ Ul and that there exists a constant K ≥ 0 such that

|φ(0)| ≤ K for all φ ∈ Ul. If E is the set of all points in Ul where V̇(2.1)(φ) = 0
and M is the largest invariant set in E, then every solution of (2.1) with initial
value in Ul approaches M as t→∞.

The following lemma is a well-known result obtained by Burton [14].

Lemma 2.4 [14] Let V : R+ × C → R be continuous and locally Lipschitz in
φ. If

(i) W0(|Xt|) ≤ V (t,Xt) ≤ W1(|Xt|) +W2

(
t∫

t−r(t)

W3(Xt(s))ds

)
and

(ii) V̇(2.2)(t,Xt) ≤ −W4(|Xt|)+N, for some N > 0 where Wi (i = 0, 1, 2, 3, 4)
are wedges,
then Xt of (2.2) is uniformly bounded and uniformly ultimately bounded for
bound B.

3 Main Results

The main tool in the proofs of our results is the continuously differentiable
functional V ≡ V (t, xt, yt, zt) defined as

V = e−P (t)U, (3.1a)

where

P (t) =

∫ t

0

|p(µ, x, y, x(µ− r(µ)), y(µ− r(µ)), z)|dµ (3.1b)
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and U ≡ U(t, xt, yt, zt) is defined as

2U = 2(α + a)

∫ x

0

h(ξ)dξ + 4

∫ y

0

g(x, τ)dτ + 4yh(x)

+ 2(α + a)yz + 2z2 + 2(α + a)

∫ y

0

τf(x, τ)dτ + βy2 + bβx2

+ 2aβxy + 2βxz +

0∫
−r(t)

t∫
t+s

[λ1y
2(θ) + λ2z

2(θ)]dθds

(3.1c)

where: a > 0, b > 0 and c > 0 are constants; λ1 and λ2 are positive constants
which will be determined later; α > 0 and β > 0 are fixed constants satisfying

c < αb < ab; (3.1d)

and

0 < β < min

{
(ab− c)a−1, (ab− c)A−1

0 ,
1

2
(a− α)A−1

1

}
(3.1e)

where A0 := 1 + a + δ−1(g(x,y)
y − b)2 and A1 := 1 + δ−1(f(x, y) − a)2.We have

the following results.

Theorem 3.1 Further to the basic assumptions on the functions f, g, h and
p appearing in (1.2), suppose that a, a1, b, c, β0, δ, γ, L1, L2 and M2 are positive
constants and that:

(i) a ≤ f(x, y) ≤ a1, yfx(x, y) ≤ 0, |zfx(x, y)| ≤ L1, |zfy(x, y)| ≤ L2 for all
x, y and z 6= 0;

(ii) g(0, 0) = g(x, 0) = 0, b ≤ g(x,y)
y for all x and y 6= 0, |gx(x, y)| ≤ M1 for

some M1 ≥ 0, and |gy(x, y)| ≤M2 for all x, y;

(iii) h(0) = 0, δ ≤ h(x)
x for all x 6= 0, |h′(x)| ≤ c for all x and ab > c;

(iv) r(t) ≤ γ, r′(t) ≤ β0 0 < β0 < 1;

(v)
∫∞

0 |p(t, x, y, x(t− r), y(t− r), z)|dt <∞ for all t ≥ 0, x, y and r(t) ≥ 0;

then every solution (xt, yt, zt) of the system (1.2) satisfies

lim
t→∞

xt = 0, lim
t→∞

yt = 0, lim
t→∞

zt = 0, (3.2)
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provided that

γ < min

{
δA−1

2 , 2(1− β0)(αb− c)A−1
3 ,

1

2
(1− β0)(a− α)A−1

4

}
(3.3)

where

A2 := c+M1 +M2 + L1 + L2; A3 := (1− β0)(a+ α)(c+M1 +M2 + L1 + L2)

+(c+M1 + L1)(2 + α + β + a)

and

A4 := 2(c+M1 +M2 + L1 + L2)(1− β0) + (M2 + L2)(2 + α + β + a).

If the function p(t, x, y, x(t − r), y(t − r), z) in (1.2) is replaced by p(t, x, y, z)
and p(t), we have the following results:

Corollary 3.1 Suppose that hypotheses (i)-(iv) of Theorem 3.1 hold, and

(i)
∫∞

0 |p(t, x, y, z)|dt < ∞ for all t ≥ 0, p : R+ × R3 → R, then the solution
(xt, yt, zt) of (1.2) satisfies (3.2) provided that (3.3) holds.

(ii)
∫∞

0 |p(t)|dt < ∞ for all t ≥ 0, p : R+ → R, then the solution xt its first
and second derivatives satisfy (3.2) if (3.3) holds.

Remark 3.1 If (1.1) is a constant coefficients neutral delay differential equa-
tion

...
x + aẍ(t− r(t)) + bẋ(t− r(t)) + cx(t− r(t)) = 0

then conditions (i)-(v) of Theorem 3.1 reduce to the Routh-Hurtwitz conditions
a > 0, ab > c and c > 0. To show this, we assume f(x(t−r(t)), ẋ(t−r(t))) = a,
g(x(t − r(t)), ẋ(t − r(t))) = bẋ(t − r(t)), h(x(t − r(t))) = cx(t − r(t)) and
p(t, x, ẋ, x(t− r(t)), ẋ(t− r(t)), ẍ) = 0.

Theorem 3.2 If the assumptions (i)-(iv) of Theorem 3.1 hold true and
|p(t, x, y, x(t− r(t)), y(t− r(t)), z)| ≤ P2, then the solutions of the system (1.2)
are uniformly bounded and uniformly ultimately bounded, if the inequality in
(3.3) holds.

Theorem 3.3 If the assumptions (i)-(iv) of Theorem 3.1 hold true and

|p(t, x, y, x(t− r(t)), y(t− r(t)), z)| ≤ φ1(t) + φ2(t)(|x|+ |y|+ |z|) (3.4a)
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for all t ≥ 0, x, y and z where φ1(t) and φ2(t) are continuous functions satisfying:

φ1(t) ≤ ϕ1, (3.4b)

where 0 < ϕ1 <∞; and there exists ε > 0 such that

0 ≤ φ2(t) ≤ ε; (3.4c)

then the solutions of (1.2) are uniformly bounded and uniformly ultimately
bounded provided that the inequality in (3.3) is satisfied.

Theorem 3.4 Suppose that assumptions (i)-(v) of Theorem 3.1 hold, then
there exists a finite constant D1 = D1(a, a1, b, c, α, β, δ,M2, λ1, λ2, x0, y0, z0, P0)
such that the unique solution (xt, yt, zt, ) of (1.1) defined by the initial functions

xt0 = x(φ), yt0 = y(φ), zt0 = z(φ) (3.5a)

satisfies the inequalities

|xt| ≤ D1, |yt| ≤ D1, |zt| ≤ D1 (3.5b)

for all t ≥ 0 where φ ∈ C([−r, 0],R3), provided that the inequality in (3.3)
holds true.

Remark 3.2 (i) If p(t, x, y, x(t− r(t)), y(t− r(t)), z) is replaced by
p(t, x, y, z) or p(t), then the conclusion of Theorem 3.2 holds.

(ii) If f(x(t− r(t)), ẋ(t− r(t))) = a, g(x(t− r(t)), ẋ(t− r(t))) = g(ẋ(t− r(t)))
and p(t, x, ẋ, x(t − r(t)), ẋ(t − r(t)), ẍ) = p(t) (1.2) reduces to the case
discussed by Sadek [30] and Tunç [36]. Our hypotheses and conclusions
coincide with theirs, thus our results extend theirs.

(iii) Whenever f(x(t − r(t)), ẋ(t − r(t))) = f(y), g(x(t − r(t)), ẋ(t − r(t))) =
g(ẋ(t − r(t))) and p(t, x, ẋ, x(t − r(t)), ẋ(t − r(t)), ẍ) = p(t, x, ẋ, ẍ). Our
hypotheses and conclusion coincide with that of Afuwape and Omeike [9,
10]. Hence, our results include and extend theirs.

Next, if p ≡ 0 in (1.2), we have the following system of equations

ẋ = y, ẏ = z, ż = −f(x, y)z − g(x, y)− h(x) +

∫ t

t−r(t)

h′(x(s))y(s)ds

+

∫ t

t−r(t)

fx(x(s), y(s))y(s)z(t)ds+

∫ t

t−r(t)

fy(x(s), y(s))z(s)z(t)ds

+

∫ t

t−r(t)

gx(x(s), y(s))y(s)ds+

∫ t

t−r(t)

gy(x(s), y(s))z(s)ds,

(3.6)
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with the following result.

Theorem 3.5 Suppose that assumptions (i)-(iv) of Theorem 3.1 hold true,
then the trivial solution of (3.6) is uniformly asymptotically stable provided
that estimate (3.3) is satisfied.

Remark 3.3 In [9, 30, 36, 37] and [44] an incomplete Lyapunov’s functionals
were constructed and used to obtain stability results compare with a complete
Lyapunov’s functional used in this investigation. Thus our results generalize
theirs.

The next lemma establishes the validity and reliability of the functional used
in this investigation.

Lemma 3.1 If all assumptions of Theorem 3.1 hold true, then there exist pos-
itive constants D2, D3 and D4 such that along a solution of (1.2)

d

dt
V (t, xt, yt, zt) = V̇ ≤ −D2(x

2(t) + y2(t) + z2(t))− [D3(x
2(t)

+ y2(t) + z2(t))−D4(|x|+ |y|+ |z|)]|p(t, x, y, x(t− r(t)), y(t− r(t)), z)|
(3.7a)

for all x, y and z. Moreover, V (t, 0, 0, 0) = 0 and there exist positive constants
D5, D6 and D7 such that

D5(x
2(t) + y2(t) + z2(t)) ≤ V (t, xt, yt, zt) ≤ D6(x

2(t) + y2(t) + z2(t))

+D7

∫ 0

−r(t)

∫ t

t+s

[x2(θ) + y2(θ) + z2(θ)]dθds
(3.7b)

for all x, y and z.

Proof: Let (xt, yt, zt) be any solution of (1.2), the derivative of the functional
V defined in (3.1a) along a solution of (1.2) is

V̇(1.2) = −e−P (t)[UṖ (t)− U̇(1.2)] (3.8a)

where

Ṗ (t) = |p(t, x, y, x(t− r(t)), y(t− r(t)), z)| (3.8b)
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and

U̇(1.2) = 2y

∫ y

0

gx(x, τ)dτ + (α + a)y

∫ y

0

τfx(x, τ)dτ + aβy2 + 2βyz

+ (βx+ (α + a)y + 2z)

{
p(t, x, y, x(t− r(t)), y(t− r(t)), z)

+

∫ t

t−r(t)

[
z(t)fx(x(s), y(s))y(s) + z(t)fy(x(s), y(s))z(s)

+ gx(x(s), y(s))y(s) + gy(x(s), y(s))z(s) + h′(x(s), y(s))y(s)

]
ds

}
+ (λ1y

2 + λ2z
2)r(t)− (1− ṙ(t))

∫ t

t−r(t)

[λ1y
2(θ) + λ2z

2(θ)]dθ

− βh(x)

x
x2 − [(α + a)

g(x, y)

y
− 2h′(x)]y2 − [2f(x, y)− (α + a)]z2

− β(
g(x, y)

y
− b)xy − β(f(x, y)− a)xz

(3.8c)

Eq. (3.8c) can be rearranged in the form

U̇(1.2) = U1 + U2 + U3 − U4 − U5 + (λ1y
2 + λ2z

2)r(t)

− (1− ṙ(t))
∫ t

t−r(t)

[λ1y
2(θ) + λ2z

2(θ)]dθ
(3.9)

where:

U1 := aβy2 + 2βyz + 2y

∫ y

0

gx(x, τ)dτ + (α + a)y

∫ y

0

τf(x, τ)dτ ;

U2 := (βx+ (α + a)y + 2z)p(t, x, y, x(t− r(t)), y(t− r(t)), z);

U3 := (βx+ (α+ a)y+ 2z)

∫ t

t−r(t)

[
z(t)fx(x(s), y(s))y(s) + z(t)fy(x(s), y(s))z(s)

+gx(x(s), y(s))y(s) + gy(x(s), y(s))z(s) + h′(x(s))y(s)

]
ds;

U4 = β
h(x)

x
x2 + [(α + a)

g(x, y)

y
− 2h′(x)]y2 + [2f(x, y)− (α + a)]z2;

and

U5 = −β(
g(x, y)

y
− b)xy − β(f(x, y)− a)xz.
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Applying the hypotheses of the Theorem 3.1 and the fact that 2pq ≤ p2 + q2

we have the following estimates for Ui(i = 1, 2, 3, 4, 5) :

U1 ≤ β[(1 + a)y2 + z2],

U2 ≤ max{β, α + a, 2}(|x|+ |y|+ |z|)|p(t, x, y, x(t− r(t)), y(t− r(t)), z)|,

U3 ≤
1

2
(c+M1 +M2 + L1 + L2)(βx

2 + (α + a)y2 + 2z2)r(t)

+
1

2
(c+M1 + L1)(α + β + a+ 2)

∫ t

t−r(t)

y2(s)ds

+
1

2
(M2 + L2)(α + β + a+ 2)

∫ t

t−r(t)

z2(s)ds,

U4 ≥ βδx2 + [(α + a)b− 2c]y2 + (a− α)z2

and

U5 =
1

4
βδ

[
x+ 2δ−1

(
g(x, y)

y
− b
)
y

]2

+
1

4
βδ

[
x+ 2δ−1

(
f(x, y)− a

)
z

]2

−1

2
δβx2 − βδ−1

(
g(x, y)

y
− b
)2

y2 − βδ−1

(
f(x, y)− a

)2

z2.

Employing estimates Ui i = 1, · · · , 5 in (3.9), we obtain

U̇(1.2) ≤ β[(1 + a)y2 + z2] + βδ−1

(
g(x, y)

y
− b
)2

y2 + βδ−1

(
f(x, y)− a

)2

z2

+ max{β, α + a, 2}(|x|+ |y|+ |z|)|p(t, x, y, x(t− r(t)), y(t− r(t)), z)|
1

2
(c+M1 +M2 + L1 + L2)(βx

2 + (α + a)y2 + 2z2)r(t)− (a− α)z2

+
1

2
(c+M1 + L1)(α + β + a+ 2)

∫ t

t−r(t)

y2(s)ds+ (λ1y
2 + λ2z

2)r(t)

+
1

2
(M2 + L2)(α + β + a+ 2)

∫ t

t−r(t)

z2(s)ds− 1

2
δβx2 − (αb+ ab− 2c)y2

− 1

4
βδ

[
x+ 2δ−1

(
g(x, y)

y
− b
)
y

]2

− 1

4
βδ

[
x+ 2δ−1

(
f(x, y)− a

)
z

]2

− (1− ṙ(t))
∫ t

t−r(t)

[λ1y
2(θ) + λ2z

2(θ)]dθ.
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Now, since

[
x + 2δ−1

(
g(x,y)

y − b
)
y

]2

≥ 0,

[
x + 2δ−1

(
f(x, y) − a

)
z

]2

≥ 0 for

all x, y, z and r′(t) ≤ β0, it follows that

U̇(1.2) ≤ max{β, α + a, 2}(|x|+ |y|+ |z|)|p(t, x, y, x(t− r(t)), y(t− r(t)), z)|

−
{
ab− c− β

[
1 + aδ−1

(
g(x, y)

y
− b
)2]}

y2

−
{

1

2
(a− α)− β

[
1 + δ−1

(
f(x, y)− a

)2]}
z2

−
{

(1− β0)λ1 −
1

2
(c+M1 + L1)(α + β + a+ 2)

}∫ t

t−r(t)

y2(s)ds

−
{

(1− β0)λ2 −
1

2
(M2 + L2)(α + β + a+ 2)

}∫ t

t−r(t)

z2(s)ds

− 1

2
β

{
δ − (c+M1 +M2 + L1 + L2)r(t)

}
x2−{

αb− c−
[

(α + a)

2
(c+M1 +M2 + L1 + L2) + λ1

]
r(t)

}
y2

−
{

1

2
(a− α)− (c+M1 +M2 + L1 + L2 + λ2)r(t)

}
z2.

In view of estimate (3.1e), the fact that 0 < β0 < 1, r(t) ≤ γ, γ > 0 for
all t ≥ 0, choosing λ1 = 1

2(c + M1 + L1)(α + β + a + 2)(1 − β0)
−1 > 0 and

λ2 = 1
2(M2 + L2)(α + β + a+ 2)(1− β0)

−1 > 0 we have

U̇(1.2) ≤ max{β, α + a, 2}(|x|+ |y|+ |z|)|p(t, x, y, x(t− r(t)), y(t− r(t)), z)|

− β

2

{
δ − (c+M1 +M2 + L1 + L2)γ

}
x2 −

{
αb− c−

[
(α + a)(1− β0)(c

+M1 +M2 + L1 + L2) + (M2 + L2)(α + β + a+ 2)

]
(1− β0)

−1γ

}
y2

−
{

1

2
(a− α)−

[
2(c+M1 +M2 + L1 + L2)(1− β0) + (M2 + L2)(α + β

+ a+ 2)

]
(1− β0)

−1γ

}
z2.

By estimate (3.3), there exists a positive constant δ0 such that

U̇(1.2) ≤ −δ0(x
2 + y2 + z2) + δ1(|x|+ |y|+ |z|)

× |p(t, x, y, x(t− r(t)), y(t− r(t)), z)|
(3.10)
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for all t ≥ 0, x, y, z where δ1 = max{β, α + a, 2}.
Furthermore, the functional U defined in (3.1c) can be rearranged in the form

U = b−1

∫ x

0

[((α + a))b− 2h′(ξ)]h(ξ)dξ + 2

∫ y

0

(
g(x, τ)

τ
− b
)
τdτ

+ b−1(h(x) + by)2 +

∫ y

0

[(α + a)f(x, τ)− (α2 + a2)]τdτ +
1

2
(βx+ ay + z)2

+
1

2
(z + αy)2 +

1

2
y2 +

β

2
(b− β)x2

+
1

2

∫ 0

−r(t)

∫ t

t+s

[λ1y
2(θ) + λ2z

2(θ)]dθds.

Now, on applying the hypotheses of Theorem 3.1 and since the double integrals
is non-negative, this equation yields

U ≥ 1

2
[(α + a)b− 2c]b−1δx2 + b−1(δx+ by)2 +

1

2
[α(a− α) + β]y2

+
1

2
(βx+ ay + z)2 +

1

2
(z + αy)2.

(3.11)

In view of (3.1d) and (3.1e), we have αb > c, ab > c, a > c and b > β so that
the right hand sides of (3.11) is positive definite. Hence, there exists a positive
constant δ2 = δ2(a, b, c, α, β, δ) such that

U ≥ δ2(x
2 + y2 + z2), (3.12)

for all x, y and z. Also, by (3.1b) and hypothesis (v) of Theorem 3.1, there
exists a constant P0 > 0 such that

0 ≤ P (t) ≤ P0 (3.13)

for all t ≥ 0. Using estimate (3.10), (3.12) and (3.13) in (3.8a), we obtain

V̇(1.2) ≤ −δ3(x
2 + y2 + z2)− [δ4(x

2 + y2 + z2)

− δ5(|x|+ |y|+ |z|)]|p(t, x, y, x(t− r(t)), y(t− r(t)), z)|
(3.14)

for all t ≥ 0, x, y and z, where δ3 = δ0e
−P0, δ4 = δ2e

−P0 and δ5 = δ1e
−P0. This

establishes estimate (3.7a).
Moreover, using estimates (3.12) and (3.13) in (3.1a), we have

V ≥ δ6(x
2 + y2 + z2) (3.15)
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for all t ≥ 0, x, y and z, where δ6 = δ2e
−P0 > 0. Also, since h′(x) ≤ c, gy(x, y) ≤

M2, h(0) = 0 = g(x, 0) for all x and f(x, y) ≤ a1 for all x and y. It is not
difficult to show that

V ≤ δ7(x
2 + y2 + z2) + δ8

∫ 0

−r(t)

∫ t

t+s

[x2(θ) + y2(θ) + z2(θ)]dθds (3.16)

for all t ≥ 0, x, y and z, where

δ7 =
1

2
max

{
2 + β(1 + a+ b) + c(α + a), (α + a)(1 + a1) + 2(M2 + 1)

+β(1 + a), 2 + α + β + a

}
and

δ8 =
1

2
max{1, λ1, λ2}.

Combining the inequalities in (3.15) and (3.16) estimate (3.7b) holds, this com-
pletes the proof of Lemma 3.1.

Next, we shall show, from the following result, that boundedness of the func-
tional V necessarily implies boundedness of solutions of the neutral delay dif-
ferential equation (1.2).

Lemma 3.2 Suppose that a, b, c, δ are positive constants and for all t ≥ 0 :

(i) f(x, y) ≥ a for all x, y;

(ii) g(x, 0) = 0, g(x, y)/y ≥ b y 6= 0;

(iii) h(0) = 0, h(x)
x ≥ δ (x 6= 0), h′(x) ≤ c for all x and ab > c;

then for any positive constant D8 with

V (xt, yt, zt) ≤ D8 (3.17)

there exists a positive constant D9 = D9(a, b, c, α, β, δ0, P0, D8) such that

|x(t)| ≤ D9, |y(t)| ≤ D9, |z(t)| ≤ D9 (3.18)

for all t ≥ 0, x, y and z.

Proof: Let (xt, yt, zt) be any solution of (1.2). From estimate (3.15) and (3.17),
we have

x2 + y2 + z2 ≤ δ−1
6 V ≤ δ−1

6 D8

for all t ≥ 0, x, y and z. Estimate (3.18) follows immediately where D9 = δ−1
6 D8.

This completes the proof of Lemma 3.2.
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4 Proof of Theorems

Proof of Theorem 3.1. Let (xt, yt, zt) be any solution of the system (1.2).
Now since (|x|+ |y|+ |z|)2 ≤ 3(x2 + y2 + z2) and choosing (x2 + y2 + z2)1/2 ≥ δ9

where δ9 = 31/2δ−1
4 δ5 > 0 is a constant, estimate (3.14) becomes

V̇(1.2) ≤ −δ3(x
2 + y2 + z2) ≤ 0 (4.1)

for all t ≥ 0, x, y and z. Now by Lemma 3.2 equation (3.18) the boundedness
of solutions of (1.2) is assured. Consider the set

Ω1 = {Xt = (xt, yt, zt) ∈ R3|V̇(1.2)(t,Xt) = 0},

and since (1.2) can be written in the form

Ẋ = F (Xt) +G(t,Xt), (4.2)

where

F (Xt) =

(
y, z,−f(x, y)z − g(x, y)− h(x) +

∫ t

t−r(t)

fx(x(s), y(s))y(s)z(t)ds

+

∫ t

t−r(t)

fy(x(s), y(s))z(s)z(t)ds+

∫ t

t−r(t)

gx(x(s), y(s))y(s)ds

+

∫ t

t−r(t)

gy(x(s), y(s))z(s)ds+

∫ t

t−r(t)

h′(x(s))y(s)ds

)T

and

G(t,Xt) =

(
0, 0, p(t, x, y, x(t− r(t)), y(t− r(t)), z)

)T

.

By (4.1), the fact that V̇(1.2)(t,Xt) = 0 on Ω1, implies that x = y = z = 0 and
since h(0) = g(0, 0) = 0, it follows that

Ẋ = F (Xt)

has solution
XT

t = KT

where Xt = (xt, yt, zt) ∈ R3 and K = (k1, k2, k3). For Xt ∈ R3 to remain in Ω1,
we must have k1 = k2 = k3 = 0. The largest invariant set in Ω1 is {0, 0, 0} so
that by estimates (3.15), (3.17), (3.18) and (4.1) all assumptions of Lemma 2.3
hold true, hence by Lemma 2.3, (3.2) is established. This completes the proof
of Theorem 3.1.
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Proof of Theorem 3.2 Let (xt, yt, zt) be any solution of the system (1.2), if
t = 0 in (3.1b), then the proof of Theorem 3.2 depends on the functional U
defined in (3.1c). By estimate (3.10) and the fact that |p(t, x, y, x(t−r(t)), y(t−
r(t)), z)| ≤ P2 for all t ≥ 0, x, y and z, it follows that

U̇(1.2) ≤ −δ0(x
2 + y2 + z2) + δ10(|x|+ |y|+ |z|) (4.3)

for all x, y and z where δ10 = δ1P2 > 0 is a constant. Since

(|x| − δ−1
0 δ10)

2 + (|y| − δ−1
0 δ10)

2 + (|z| − δ−1
0 δ10)

2 ≥ 0

for all x, y and z, estimate (4.3) becomes

U̇(1.2) ≤ −δ11(x
2 + y2 + z2) + δ12 (4.4)

for all x, y and z, where δ11 = 1
2δ0 and δ12 = 3

2δ
−1
0 δ2

10.
Moreover, by estimates (3.12) and (3.16), we obtain

δ2(x
2 + y2 + z2) ≤ U ≤ δ7(x

2 + y2 + z2)

+ δ8

∫ 0

−r(t)

∫ t

t+s

(x2(θ) + y2(θ) + z2(θ))dθds
(4.5)

for all t ≥ 0, x, y and z. In view of estimates (4.4) and (4.5) the assumptions
of Lemma 2.4 hold true, hence by Lemma 2.4 the solution (xt, yt, zt) of (1.2)
is uniformly bounded and uniformly ultimately bounded. This completes the
proof of Theorem 3.2.

Proof of Theorem 3.3. Let (xt, yt, zt) be any solution of the system (1.2),
the proof of this result depends on the functional U defined in (3.1c). Using
estimates (3.10) and (3.4a), we obtain

U̇(1.2) ≤ −δ0(x
2 + y2 + z2) + δ1φ1(t)(|x|+ |y|+ |z|) + δ1φ2(t)(|x|+ |y|+ |z|)2

for all t ≥ 0, x, y and z. The conclusion of remaining part of the proof follows
the strategy in the proof of Theorem 3.2 in [6] and hence it is omitted.

Proof of Theorem 3.4] Let (xt, yt, zt) be any solution of the system (1.2),
from estimate (3.14), noting that |x| < 1 + x2, we have

V̇(1.2) ≤ −δ3(x
2 + y2 + z2)− [(δ4 − δ5)(x

2 + y2 + z2)− 3δ5]

× |p(t, x, y, x(t− r(t)), y(t− r(t)), z)|
(4.6)

for all t ≥ 0, x, y and z. Since the integrals in (3.16) is positive, there exists a
positive constant δ13 = δ13(δ7, δ8) such that

x2 + y2 + z2 ≥ δ−1
13 V (4.7)
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for all t ≥ 0, x, y and z. Choosing δ4 − δ5 = δ14 > 0, using estimate (4.7) in
(4.6), we obtain

V̇(1.2) + δ−1
13 δ14|p(t, x, y, x(t− r(t)), y(t− r(t)), z)|V

≤ 3δ5|p(t, x, y, x(t− r(t)), y(t− r(t)), z)|.
Solving this first order neutral delay differential inequality using the integrating
factor
exp(δ−1

13 δ14P (t)) (P (t) is defined in (3.1b)) and estimate (3.13), we find

V (t, xt, yt, zt) ≤ δ15 (4.8)

for all t ≥ 0, xt, yt and zt, where δ15 = V (ϑ) + 3δ5P0 exp(δ−1
13 δ14P0), V (ϑ) =

V (t0, xt0, yt0, zt0), t0 = 0, xt0 = x(ϑ), yt0 = y(ϑ) and zt0 = z(ϑ). Using (4.8) in
(3.15), we obtain

|xt| ≤ δ16, |yt| ≤ δ16, |zt| ≤ δ16

for all t ≥ 0. where δ16 = δ−1
6 δ15. This completes the proof of the theorem.

Proof of Theorem 3.5. Let (xt, yt, zt) be any solution of the system (1.2),
since p ≡ 0 in (1.2), Eq. (3.1a) coincides with (3.1c). Clearly, in view of (3.1c)
U(0, 0, 0) = 0 and estimate (3.10) becomes

U̇(1.2) ≤ −δ0(x
2 + y2 + z2) ≤ 0

for all x, y, z. Also, by (3.12) and (4.7), we have

δ2(x
2 + y2 + z2) ≤ U ≤ δ13(x

2 + y2 + z2)

x, y and z. Now define a set

Ω2 = {Xt = (xt, yt, zt) ∈ R3|U̇(1.2)(t,Xt) = 0}.

The conclusion of remaining part of the proof follows the strategy in the proof
of Theorem 3.1 and hence it is omitted.

5 A global example
As a particular case of (1.1), consider the following third order nonlinear non
autonomous neural delay differential equation
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...
x (t) +

[
4 +

1

1 + 1+|x(t−r(t))ẋ(t−r(t))|
|ẍ(t)|(1−ẋ2(t−r(t)))

]
ẍ(t) + 3ẋ(t− r(t))

+
ẋ(t− r(t))

1 + |x(t− r(t))ẋ(t− r(t))|+ ẋ2(t− r(t))

+ 2x(t− r(t)) +
x(t− r(t))

1 + |x(t− r(t))|

=
1

1 + t2 + |x|+ |ẋ|+ |x(t− r(t))|+ |ẋ(t− r(t))|+ |ẍ|

(5.1)

or its equivalent system

ẋ = y, ẏ = z, ż =
1

1 + t2 + |x|+ |y|+ |x(t− r(t)|+ |y(t− r(t)|+ |z|

−
[
4 +

1

1 + 1+|xy|
|z|(1+y2)

]
z −

(
3 +

1

1 + |xy|+ y2

)
y −

(
2 +

1

1 + |x|

)
x

−
∫ t

t−r(t)

y2z(t)

|z(t)|(1 + y2(s))[1 + 1+|x(s)y(s)|
|z(t)|(1+y2(s)) ]

2
ds

−
∫ t

t−r(t)

(|x(s)|(1− y2(s))− 2|y(s)|)z(t)

|z(t)|(1 + y2(s))[1 + 1+|x(s)y(s)|
|z(t)|(1+y2(s)) ]

2
ds

−
∫ t

t−r(t)

y2(s)ds

[1 + |x(s)y(s)|+ y2(s)]2

+

∫ t

t−r(t)

[
3 +

1− y2(s)

[1 + |x(s)y(s)|+ y2(s)]2

]
z(s)ds

+

∫ t

t−r(t)

[
2 +

1

(1 + |x(s)|)2

]
y(s)ds

(5.2)

From (1.2) and (5.2), we obtain the following relations:

(a) the function

f(x, y) =

[
4 +

1

1 + 1+|xy|
|z|(1+y2)

]
since 0 ≤ 1

1 + 1+|xy|
|z|(1+y2)

≤ 1 for all x, y and z 6= 0, we find that

4 ≤ f(x, y) ≤ 5
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for all x, y and z 6= 0, where a = 4 > 0 and a1 = 5 > 0. Also,

yfx(x, y) =
−y2

|z|(1 + y2)

[
1 + 1+|xy|

|z|(1+y2)

]2 ≤ 0

for all x, y and z 6= 0,

|zfx(x, y)| ≤
∣∣∣∣ |y|

(1 + y2)

[
1 + 1+|xy|

|z|(1+y2)

]2

∣∣∣∣ ≤ 1

for all x, y and z 6= 0, where L1 = 1 > 0, and for y > 0, |x| ≥ 2|y|[1−y2]−1,
we have

|zfy(x, y)| ≤
∣∣∣∣ |x|(1− y2)− 2|y|

(1 + y2)2

[
1 + 1+1/2(x2+y2)

|z|(1+y2)

]2

∣∣∣∣ ≤ 1

for all x, y and z 6= 0, where L2 = 1 > 0;

(b) the function

g(x, y) = 3y +
y

1 + |xy|+ y2
.

Clearly g(0, 0) = 0 = g(x, 0) for all x. Also, since 0 ≤ 1

1 + |xy|+ y2
, we

have
g(x, y)

y
≥ 3

for all x and y 6= 0, where b = 3 > 0. Moreover,

|gx(x, y)| ≤ y2

(1 + |xy|+ y2)2
≤ 1

for all x and y, where M1 = 1 > 0 and M1 = 0 when y = 0 and

gy(x, y) = 3 +
1− y2

(1 + |xy|+ y2)2
.

Since
1− y2

(1 + |xy|+ y2)2
≤ 1 for all x and y, we have

|gy(x, y)| ≤ 4

for all x and y where M2 = 4 > 0.
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(c) the function

h(x) = 2x+
x

1 + |x|
.

It is clear, from this relation, that h(0) = 0, also, since 0 ≤ 1
1+|x| ≤ 1 for

all x, we have that
h(x)

x
≥ 2

for all x 6= 0 where δ = 2 > 0. Moreover, for x > 0, we obtain

h′(x) = 2 +
1

(1 + |x|)2

this implies that
|h′(x)| ≤ 3

since 1
(1+|x|)2 ≤ 1 for all x where c = 3 > 0, ab > c implies that 4 > 1.

(d) the function

p(t, x, y, x(t− r(t)), y(t− r(t)), z) =

1

1 + t2 + |x|+ |y|+ |x(t− r(t)|+ |y(t− r(t)|+ |z|
≤ 1

for all t ≥ 0, x, y, x(t− r(t)), y(t− r(t)) and z. it follows that∫ ∞
0

∣∣∣∣ 1

1 + t2 + |x|+ |y|+ |x(t− r(t)|+ |y(t− r(t)|+ |z|

∣∣∣∣dt <∞
for all t ≥ 0, x, y, x(t− r(t)), y(t− r(t)) and z. Furthermore,

0 < β < min

{
2

1

4
, 1

4

5
,
1

2

}
=

1

2
.

Choosing α = 3, β = 1
3 and β0 = 1

2 , we obtain

γ < min

{
1

10
,

18

245
,

3

680

}
=

3

680
.

All assumptions of the main results hold true, thus, the conclusions also
follow.
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[37] Tunç, C.; On asymptotic stability of solutions to third-order nonlinear
differential equations with retarded argument. Communications in Applied
Analysis 11 (2007), 515-528.
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