Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

1-Benzyl-3-[(4-methylphenyl)imino]-indolin-2-one

Adebomi A. Ikotun, ${ }^{\text {a }}$ Pius O. Adelani ${ }^{\text {b }}$ and Gabriel O. Egharevba ${ }^{\text {c* }}$

${ }^{\text {a }}$ Chemistry and Industrial Chemistry Department, Bowen University, Iwo, Nigeria, ${ }^{\mathbf{b}}$ Department of Civil Engineering and Geological Sciences and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA, and ${ }^{\text {c }}$ Chemistry Department, Obafemi Awolowo University, Ile-ife, Nigeria
Correspondence e-mail: gegharev@yahoo.com

Received 13 May 2012; accepted 29 May 2012
Key indicators: single-crystal X-ray study; $T=296 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.042 ; w R$ factor $=0.105$; data-to-parameter ratio $=16.6$.

In the title compound, $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}$, the phenyl and tolyl rings make dihedral angles of 84.71 (7) and 65.11 (6) ${ }^{\circ}$, respectively, with the isatin group. The aromatic rings make a dihedral angle of $60.90(8)^{\circ}$. The imino $\mathrm{C}=\mathrm{N}$ double bond, exists in an E conformation. In the crystal, molecules are linked by weak $\pi-\pi$ stacking interactions [centroid-centroid distance $=$ 3.6598 (13) Å].

Related literature

For background to isatin, its derivatives and their biological significance, see: Chazeau et al. (1992); Igosheva et al. (2004); Medvedev et al. (1996); Abele et al. (2003). For metal complexes of isatin derivatives and their biological significance, see: Rodriguez-Arguelles et al. (2004); Singh et al. (2005); Chohan et al. (2006); Adetoye et al. (2009); Ikotun et al. (2012). For N-benzyl isatin, its derivatives and biological significance, see Akkurt et al. (2006); Jarrahpour \& Khalili (2007); Cao et al. (2009).

Experimental

Crystal data
$\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}$
$M_{r}=326.38$
Monoclinic, $P 2_{1} / c$
$a=10.174$ (2) A
$b=15.086$ (4) \AA
$c=11.714$ (3) \AA
$\beta=113.596$ (3) ${ }^{\circ}$

Data collection

Bruker SMART CCD area-detector diffractometer
18815 measured reflections

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.105$
$S=0.92$
3763 reflections
$V=1647.5(7) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
$0.04 \times 0.02 \times 0.01 \mathrm{~mm}$

> 3763 independent reflections 2456 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.067$

227 parameters
H-atom parameters constrained
$\Delta \rho_{\text {max }}=0.35 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.31 \mathrm{e}^{-3}$

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

We appreciate Professor John A. Gladysz for benevolently facilitating AAI's visit to his laboratory at Texas A \& M University during the course of this research and also all members of the Gladysz research group for their assistance towards a successful academic visit.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2411).

References

Abele, E., Abele, R., Dzenitis, O. \& Lukevics, E. (2003). Chem. Heterocycl. Compd, 39, 3-35.
Adetoye, A. A., Egharevba, G. O., Obafemi, C. A. \& Kelly, D. R. (2009). Toxicol. Environ. Chem. 91, 837-846.
Akkurt, M., Türktekin, S., Jarrahpour, A. A., Khalili, D. \& Büyükgüngör, O. (2006). Acta Cryst. E62, o1575-o1577.

Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Cao, J., Gao, H., Bemis, G., Salituro, F., Ledeboer, M., Harrington, E., Wilke, S., Taslimi, P., Pazhanisamy, S., Xie, X., Jacobs, M. \& Green, J. (2009). Bioorg. Med. Chem. Lett. 19, 2891-2895.
Chazeau, V., Gussac, M. \& Boucherle, A. (1992). Eur. J. Med. Chem. 27, 615625.

Chohan, Z. H., Shaikh, A. U. \& Naseer, M. M. (2006). Appl. Organomet. Chem. 20, 729-739.
Igosheva, N., Matta, S. \& Glover, V. (2004). Physiol. Behav. 80, 665-668.
Ikotun, A. A., Egharevba, G. O., Obafemi, C. A. \& Owoseni, O. O. (2012). J. Chem. Pharm. 4, 416-422.
Jarrahpour, A. \& Khalili, D. (2007). Tetrahedron Lett. 48, 7140-7143.
Medvedev, A. G., Clow, A., Sandler, M. \& Glover, V. (1996). Biochem. Pharmacol. 52, 385-391.
Rodriguez-Arguelles, M. C., Ferrari, M. B., Bisceglie, F., Pelizzi, C., Pelosi, G., Pinelli, S. \& Sassi, M. (2004). J. Inorg. Biochem. 98, 313-321.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Singh, R. V., Fahmi, N. \& Biyala, M. K. (2005). J. Iran. Chem. Soc. 2, 40-46.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supplementary materials

Acta Cryst. (2012). E68, o2098 [doi:10.1107/S1600536812024506]

1-Benzyl-3-[(4-methylphenyl)imino]indolin-2-one

Adebomi A. Ikotun, Pius O. Adelani and Gabriel O. Egharevba

Comment

Indole-2, 3-dione commonly known as isatin is an endogenous indole present in mammalian tissues and fluids (Igosheva et al., 2004). It has largely been used as a versatile reagent in organic synthesis, to obtain heterocyclic compounds, and as a raw material for drugs (Abele et al., 2003). Several novel Schiff bases of isatin have been reported with a variety of pharmacological actions, including anticonvulsant, antimicrobial and antiviral activities, inhibition of monoamine oxidase (Medvedev et al., 1996). The study of the metal complexes of the Schiff base ligands derived from isatin and their biological applications has also received much attention (Singh et al., 2005; Chohan et al., 2006; Ikotun et al., 2012). Some first row transition metal complexes of the Schiff base of isatin derivatives were designed, prepared and characterized by spectroscopic means (Adetoye et al., 2009). The significance of these metal complexes of isatin derivatives has even been extended to the design of novel anticancer drugs (Rodriguez-Arguelles et al., 2004). N-benzyl-indole-2, 3-dione (N-benzylisatin) has also been prepared and the X-ray crystallographic structure has been established (Akkurt et al., 2006). N -alkylated isatins have interesting pharmacological activities such as antibacterial and anticancer (Chazeau et al., 1992). They are also reversible and competitive inhibitors of monoamine oxidase A and B (Medvedev et al., 1996). Some mono- and bis-spiro-b- benzylisatin have been prepared and characterized by spectroscopic means (Jarrahpour et al., 2007). A series of N-benzyl isatin oximes have also been developed as inhibitors of the mitogenactivated kinase, KNK3 (Cao et al., 2009). Thus the motivation and need to design novel Schiff bases of N-benzyl isatin, which would be of great biological significance, is the propelling force for this research. In the title compound, $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}$, Fig. 1, the phenyl and benzene rings make dihedral angles of 84.71 (7) ${ }^{\circ}$ and 65.11 (6) ${ }^{\circ}$ with isatin group respectively. The aromatic rings make a dihedral angle of $60.90(8)^{\circ}$. The imino $\mathrm{C}=\mathrm{N}$ double bond, exists in an E conformation. In the crystal the molecules are linked by weak $\pi-\pi$ stacking interaction (centroid-centroid distance $3.6598(13) \AA\left(\mathrm{Cg} 1=\mathrm{C} 4 / \mathrm{C} 5 / \mathrm{C} 6 / \mathrm{C} 7 / \mathrm{C} 8 / \mathrm{C} 9 ; \mathrm{Cg} 2^{i}=\mathrm{C} 17 / \mathrm{C} 18 / \mathrm{C} 19 / \mathrm{C} 20 / \mathrm{C} 21 / \mathrm{C} 22\right.$, symmetry code (i): x,1/2-y, 1/2+z), Fig. 2.

Experimental

N-benzylisatin was first prepared and recrystallized in ethanol using the method of Akkurt et al., 2006 with slight modifications. N-benzylisatin ($2.00 \mathrm{~g} ; 8.44 \mathrm{mmol}$) was then dissolved in 30 ml hot ethanol. P-toluidine ($0.90 \mathrm{~g} ; 8.44$ mmol) was dissolved in 10 ml ethanol. The solutions were mixed and refluxed for 6 h . The solution was allowed to cool and the deep orange solid was filtered under vacuum. The product was purified with flash column chromatography and the orange crystal as analyzed. The product was obtained at a yield of $78 \%(2.13 \mathrm{~g})$. Flash Column Chromatographic purification of the product was carried out using a mixture of chloroform: diethyl ether (50\%:50\%) and single X-ray suitable crystals were got after the solvent was evaporated under vacuum.

Refinement

The H atoms of the water molecule were located on a Fourier difference map, restrained by DFIX command $0.85 \AA$ for O - H distances and by DFIX $1.39 \AA$ for $\mathrm{H} \cdots \mathrm{H}$ distance, and refined as riding with $U_{\mathrm{iso}}(\mathrm{H})=1.5 \mathrm{U}_{\text {eq }}(\mathrm{O})$. Other atoms were placed in their calculated positions, with $\mathrm{C}-\mathrm{H}=0.93$ or $0.96 \AA$, and refined using a riding model, with $U_{\text {iso }}(\mathrm{H})=1.2$ or $1.5 \mathrm{U}_{\mathrm{eq}}(\mathrm{C})$.

Computing details

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figure 1

The molecular structure of the title compound showing the labelled atoms; thermal ellipsoid are drawn at 50% probability level.

Figure 2
Part of the crystal structure showing $\pi-\pi$ stacking interaction (centroid-centroid distance 3.6598 (13) \AA ($\mathrm{Cg} 1=\mathrm{C} 4 / \mathrm{C} 5 / \mathrm{C} 6 / \mathrm{C} 7 / \mathrm{C} 8 / \mathrm{C} 9 ; \mathrm{Cg}^{2}=\mathrm{C} 17 / \mathrm{C} 18 / \mathrm{C} 19 / \mathrm{C} 20 / \mathrm{C} 21 / \mathrm{C} 22$, symmetry code (i): $\mathrm{x}, 1 / 2-\mathrm{y}, 1 / 2+\mathrm{z}$).

1-Benzyl-3-[(4-methylphenyl)imino]indolin-2-one

Crystal data

$\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}$
$M_{r}=326.38$
Monoclinic, $P 2_{1} / c$
Hall symbol: - P 2ybc
$a=10.174$ (2) \AA
$b=15.086$ (4) \AA
$c=11.714(3) \AA$
$\beta=113.596(3)^{\circ}$
$V=1647.5$ (7) \AA^{3}
$Z=4$

Data collection

Bruker SMART CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
phi and ω scans
$F(000)=688$
$D_{\mathrm{x}}=1.316 \mathrm{Mg} \mathrm{m}^{-3}$
Melting point: 427 K
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 3069 reflections
$\theta=2.6-25.6^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Rectangular plate, orange
$0.04 \times 0.02 \times 0.01 \mathrm{~mm}$

18815 measured reflections
3763 independent reflections
2456 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.067$
$\theta_{\text {max }}=27.5^{\circ}, \theta_{\text {min }}=2.2^{\circ}$
$h=-12 \rightarrow 13$
$k=-19 \rightarrow 19$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.105$
$S=0.92$
3763 reflections
227 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
$l=-15 \rightarrow 15$

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0513 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.35$ e \AA^{-3}
$\Delta \rho_{\min }=-0.31$ e \AA^{-3}
Extinction correction: SHELXL97 (Sheldrick,
2008), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Extinction coefficient: 0.0075 (12)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} *^{\prime} U_{\text {eq }}$
O1	$0.30165(11)$	$0.19312(7)$	$0.89390(10)$	$0.0256(3)$
N1	$0.23619(13)$	$0.32278(8)$	$0.77977(12)$	$0.0192(3)$
N2	$0.06155(13)$	$0.22984(8)$	$0.95540(12)$	$0.0195(3)$
C18	$-0.15861(16)$	$0.18456(10)$	$0.97075(14)$	$0.0221(4)$
H18A	-0.1610	0.1353	0.9223	0.027^{*}
C19	$-0.26219(17)$	$0.19479(11)$	$1.01801(15)$	$0.0237(4)$
H19A	-0.3354	0.1531	0.9984	0.028^{*}
C6	$-0.10985(17)$	$0.48946(10)$	$0.72028(14)$	$0.0217(4)$
H6A	-0.1886	0.5253	0.7085	0.026^{*}
C8	$0.09598(16)$	$0.45662(10)$	$0.67264(14)$	$0.0204(4)$
H8A	0.1541	0.4694	0.6305	0.024^{*}
C9	$0.12438(16)$	$0.38541(10)$	$0.75280(14)$	$0.0179(3)$
C11	$0.43743(16)$	$0.40255(10)$	$0.75565(14)$	$0.0197(4)$
C22	$-0.04756(17)$	$0.32009(10)$	$1.06994(14)$	$0.0226(4)$
H22A	0.0236	0.3629	1.0872	0.027^{*}
C5	$-0.08057(16)$	$0.41752(10)$	$0.80063(14)$	$0.0203(4)$
H5A	-0.1394	0.4046	0.8421	0.024^{*}
C10	$0.34082(17)$	$0.32210(10)$	$0.72300(15)$	$0.0233(4)$
H10A	0.2900	0.3190	0.6332	0.028^{*}
H10B	0.3996	0.2693	0.7499	0.028^{*}
C17	$-0.05075(16)$	$0.24753(10)$	$0.99516(14)$	$0.0192(3)$
C4	$0.03861(16)$	$0.36512(10)$	$0.81794(14)$	$0.0178(3)$

C20	$-0.25950(16)$	$0.26584(10)$	$1.09418(14)$	$0.0211(4)$
C7	$-0.02307(16)$	$0.50861(10)$	$0.65726(14)$	$0.0209(4)$
H7A	-0.0449	0.5571	0.6038	0.025^{*}
C21	$-0.15100(17)$	$0.32812(10)$	$1.11853(15)$	$0.0236(4)$
H21A	-0.1476	0.3765	1.1688	0.028^{*}
C3	$0.09602(16)$	$0.28278(10)$	$0.88691(14)$	$0.0182(3)$
C2	$0.22451(16)$	$0.25759(10)$	$0.85647(14)$	$0.0196(3)$
C16	$0.52131(17)$	$0.42307(11)$	$0.87874(15)$	$0.0249(4)$
H16A	0.5174	0.3873	0.9420	0.030^{*}
C12	$0.44522(17)$	$0.45665(12)$	$0.66264(16)$	$0.0289(4)$
H12A	0.3903	0.4435	0.5795	0.035^{*}
C13	$0.53422(18)$	$0.53003(12)$	$0.69284(18)$	$0.0339(5)$
H13A	0.5386	0.5660	0.6300	0.041^{*}
C15	$0.61098(18)$	$0.49624(12)$	$0.90861(17)$	$0.0315(4)$
H15A	0.6676	0.5090	0.9916	0.038^{*}
C14	$0.61647(18)$	$0.54999(11)$	$0.81580(18)$	$0.0332(5)$
H14A	0.6755	0.5997	0.8359	0.040^{*}
C23	$-0.36913(18)$	$0.27314(12)$	$1.15025(16)$	$0.0290(4)$
H23A	-0.3515	0.3259	1.2000	0.044^{*}
H23B	-0.3622	0.2223	1.2016	0.044^{*}
H23C	-0.4635	0.2759	1.0848	0.044^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0239(6)$	$0.0211(6)$	$0.0327(7)$	$0.0069(5)$	$0.0122(5)$	$0.0020(5)$
N1	$0.0175(7)$	$0.0178(7)$	$0.0251(7)$	$0.0009(5)$	$0.0115(6)$	$0.0001(5)$
N2	$0.0186(7)$	$0.0179(7)$	$0.0218(7)$	$-0.0012(5)$	$0.0077(6)$	$-0.0007(6)$
C18	$0.0239(9)$	$0.0178(8)$	$0.0236(9)$	$-0.0010(7)$	$0.0084(7)$	$-0.0019(7)$
C19	$0.0185(8)$	$0.0245(9)$	$0.0268(9)$	$-0.0041(7)$	$0.0076(7)$	$0.0006(7)$
C6	$0.0198(8)$	$0.0183(8)$	$0.0271(9)$	$0.0023(7)$	$0.0094(7)$	$-0.0022(7)$
C8	$0.0205(8)$	$0.0195(8)$	$0.0231(8)$	$-0.0037(7)$	$0.0108(7)$	$-0.0019(7)$
C9	$0.0169(8)$	$0.0146(8)$	$0.0224(8)$	$-0.0011(6)$	$0.0080(7)$	$-0.0033(6)$
C11	$0.0163(8)$	$0.0205(8)$	$0.0259(9)$	$0.0039(6)$	$0.0123(7)$	$0.0011(7)$
C22	$0.0214(9)$	$0.0208(9)$	$0.0255(9)$	$-0.0043(7)$	$0.0091(7)$	$-0.0014(7)$
C5	$0.0195(8)$	$0.0198(8)$	$0.0241(9)$	$-0.0014(7)$	$0.0112(7)$	$-0.0015(7)$
C10	$0.0207(9)$	$0.0257(9)$	$0.0277(9)$	$0.0017(7)$	$0.0140(7)$	$-0.0037(7)$
C17	$0.0194(8)$	$0.0183(8)$	$0.0188(8)$	$0.0027(6)$	$0.0067(7)$	$0.0041(6)$
C4	$0.0172(8)$	$0.0158(8)$	$0.0201(8)$	$-0.0019(6)$	$0.0071(7)$	$-0.0020(6)$
C20	$0.0189(8)$	$0.0239(9)$	$0.0192(8)$	$0.0017(7)$	$0.0065(7)$	$0.0027(7)$
C7	$0.0240(9)$	$0.0161(8)$	$0.0221(9)$	$-0.0008(7)$	$0.0086(7)$	$0.0002(6)$
C21	$0.0250(9)$	$0.0242(9)$	$0.0224(9)$	$-0.0011(7)$	$0.0102(7)$	$-0.0043(7)$
C3	$0.0161(8)$	$0.0153(8)$	$0.0215(8)$	$-0.0018(6)$	$0.0057(7)$	$-0.0027(6)$
C2	$0.0187(8)$	$0.0181(8)$	$0.0218(8)$	$-0.0018(7)$	$0.0078(7)$	$-0.0036(7)$
C16	$0.0245(9)$	$0.0267(9)$	$0.0266(9)$	$0.0012(7)$	$0.0136(8)$	$0.0030(7)$
C12	$0.0179(8)$	$0.0421(11)$	$0.0277(9)$	$0.0035(8)$	$0.0102(7)$	$0.0101(8)$
C13	$0.0218(9)$	$0.0368(11)$	$0.0476(12)$	$0.0062(8)$	$0.0185(9)$	$0.0211(9)$
C15	$0.0265(10)$	$0.0343(10)$	$0.0362(11)$	$-0.0052(8)$	$0.0152(9)$	$-0.0097(8)$
C14	$0.0229(9)$	$0.0217(9)$	$0.0617(13)$	$-0.0011(7)$	$0.0238(9)$	$-0.0011(9)$
C23	$0.0250(9)$	$0.0378(10)$	$0.0264(9)$	$-0.0001(8)$	$0.0125(8)$	$0.0007(8)$

Geometric parameters (A, ${ }^{\circ}$)

$\mathrm{O} 1-\mathrm{C} 2$	1.2160 (18)	C22-H22A	0.9300
N1-C2	1.3690 (19)	C5-C4	1.393 (2)
N1-C9	1.4137 (19)	C5-H5A	0.9300
N1-C10	1.4636 (19)	C10-H10A	0.9700
N2-C3	1.2767 (19)	C10-H10B	0.9700
N2-C17	1.4210 (19)	C4-C3	1.469 (2)
C18-C19	1.381 (2)	C20-C21	1.389 (2)
C18-C17	1.392 (2)	C20-C23	1.508 (2)
C18-H18A	0.9300	C7-H7A	0.9300
C19-C20	1.388 (2)	C21-H21A	0.9300
C19-H19A	0.9300	$\mathrm{C} 3-\mathrm{C} 2$	1.534 (2)
C6-C5	1.389 (2)	C16-C15	1.385 (2)
C6-C7	1.389 (2)	C16-H16A	0.9300
C6-H6A	0.9300	C12-C13	1.383 (2)
C8-C9	1.379 (2)	C12-H12A	0.9300
C8-C7	1.393 (2)	C13-C14	1.379 (3)
C8-H8A	0.9300	C13-H13A	0.9300
C9-C4	1.404 (2)	C15-C14	1.375 (2)
C11-C16	1.385 (2)	C15-H15A	0.9300
C11-C12	1.389 (2)	C14-H14A	0.9300
C11-C10	1.511 (2)	C23-H23A	0.9600
C22-C21	1.388 (2)	C23-H23B	0.9600
C22-C17	1.394 (2)	$\mathrm{C} 23-\mathrm{H} 23 \mathrm{C}$	0.9600
C2-N1-C9	110.69 (13)	C5-C4-C3	133.73 (14)
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 10$	124.27 (13)	C9-C4-C3	106.64 (13)
C9-N1-C10	124.73 (13)	C19-C20-C21	117.63 (15)
C3-N2-C17	123.20 (13)	C19-C20-C23	120.58 (15)
C19-C18-C17	120.45 (15)	$\mathrm{C} 21-\mathrm{C} 20-\mathrm{C} 23$	121.78 (15)
C19-C18-H18A	119.8	C6-C7-C8	121.26 (15)
C17-C18-H18A	119.8	C6-C7-H7A	119.4
C18-C19-C20	121.47 (15)	C8-C7-H7A	119.4
C18-C19-H19A	119.3	$\mathrm{C} 22-\mathrm{C} 21-\mathrm{C} 20$	121.84 (15)
C20-C19-H19A	119.3	$\mathrm{C} 22-\mathrm{C} 21-\mathrm{H} 21 \mathrm{~A}$	119.1
C5-C6-C7	120.88 (15)	C20-C21-H21A	119.1
C5-C6-H6A	119.6	N2-C3-C4	136.53 (14)
C7-C6-H6A	119.6	$\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 2$	117.71 (13)
C9-C8-C7	117.45 (14)	C4-C3-C2	105.65 (12)
C9-C8-H8A	121.3	$\mathrm{O} 1-\mathrm{C} 2-\mathrm{N} 1$	126.74 (15)
C7-C8-H8A	121.3	$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3$	126.97 (14)
C8-C9-C4	122.25 (14)	N1-C2-C3	106.29 (13)
C8-C9-N1	127.10 (14)	C15-C16-C11	120.69 (16)
C4-C9-N1	110.64 (13)	C15-C16-H16A	119.7
C16-C11-C12	118.72 (15)	C11-C16-H16A	119.7
C16-C11-C10	120.68 (14)	C13-C12-C11	120.44 (17)
C12-C11-C10	120.60 (15)	C13-C12-H12A	119.8
$\mathrm{C} 21-\mathrm{C} 22-\mathrm{C} 17$	119.70 (14)	C11-C12-H12A	119.8
$\mathrm{C} 21-\mathrm{C} 22-\mathrm{H} 22 \mathrm{~A}$	120.1	C14-C13-C12	120.23 (16)

supplementary materials

$\mathrm{C} 17-\mathrm{C} 22-\mathrm{H} 22 \mathrm{~A}$	120.1	$\mathrm{C} 14-\mathrm{C} 13-\mathrm{H} 13 \mathrm{~A}$	119.9
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$118.71(14)$	$\mathrm{C} 12-\mathrm{C} 13-\mathrm{H} 13 \mathrm{~A}$	119.9
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	120.6	$\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 16$	$120.09(17)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	120.6	$\mathrm{C} 14-\mathrm{C} 15-\mathrm{H} 15 \mathrm{~A}$	120.0
$\mathrm{~N} 1-\mathrm{C} 10-\mathrm{C} 11$	$113.38(12)$	$\mathrm{C} 16-\mathrm{C} 15-\mathrm{H} 15 \mathrm{~A}$	120.0
$\mathrm{~N} 1-\mathrm{C} 10-\mathrm{H} 10 \mathrm{~A}$	108.9	$\mathrm{C} 15-\mathrm{C} 14-\mathrm{C} 13$	$119.82(17)$
$\mathrm{C} 11-\mathrm{C} 10-\mathrm{H} 10 \mathrm{~A}$	108.9	$\mathrm{C} 15-\mathrm{C} 14-\mathrm{H} 14 \mathrm{~A}$	120.1
$\mathrm{~N} 1-\mathrm{C} 10-\mathrm{H} 10 \mathrm{~B}$	108.9	$\mathrm{C} 13-\mathrm{C} 14-\mathrm{H} 14 \mathrm{~A}$	120.1
C11-C10-H10B	108.9	$\mathrm{C} 20-\mathrm{C} 23-\mathrm{H} 23 \mathrm{~A}$	109.5
$\mathrm{H} 10 \mathrm{~A}-\mathrm{C} 10-\mathrm{H} 10 \mathrm{~B}$	107.7	$\mathrm{H} 23-\mathrm{C} 23-\mathrm{H} 23 \mathrm{~B}$	109.5
$\mathrm{C} 18-\mathrm{C} 17-\mathrm{C} 22$	$118.88(15)$	$\mathrm{C} 20-\mathrm{H} 23 \mathrm{C} 23-\mathrm{H} 23 \mathrm{C}$	109.5
$\mathrm{C} 18-\mathrm{C} 17-\mathrm{N} 2$	$118.41(14)$	$\mathrm{H} 23 \mathrm{~A}-\mathrm{C} 23-\mathrm{H} 23 \mathrm{C}$	109.5
$\mathrm{C} 22-\mathrm{C} 17-\mathrm{N} 2$	$122.27(14)$	$\mathrm{H} 23 \mathrm{~B}-\mathrm{C} 23-\mathrm{H} 23 \mathrm{C}$	109.5
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 9$	$119.44(14)$		109.5

